Protocol in General Pathological Physiology Acid-base disorders

Introduction

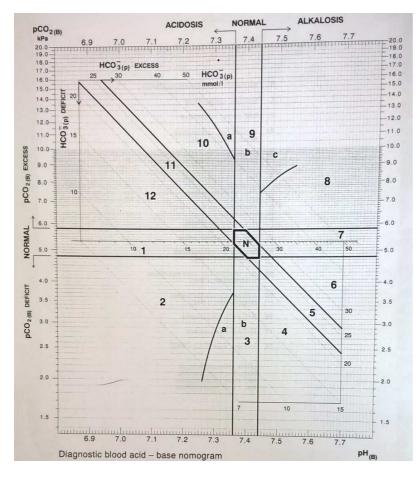
Maintaining the homeostasis of the inner milieu and the acid-base equilibrium is an important prerequisite for the proper metabolic processes in the body. Each day the cells produce approximately 20 mol of "volatile" acids (carbonic acid) and about 40 - 80 mmol of fixed or "non-volatile" acids (acetoacetic acid, lactic acid and others). Fluctuations in the balance between acids and bases produced during the metabolism are constantly regulated and the acid-base balance is maintained by cooperation among several regulatory mechanisms: intracellular and extracellular buffer systems (bicarbonate, phosphate, protein, hemoglobin), lungs (excretion of CO₂) and kidneys (excretion of H⁺, retention of bicarbonate HCO₃⁻), but also other organs (liver, gastrointestinal system, bone).

Acid-base disorders are divided into four basic forms (tab. 1): **metabolic acidosis (MAC)**, **metabolic alkalosis (MAL)**, **respiratory acidosis (RAC)** and **respiratory alkalosis (RAL)**. These may occur as simple disorders, or as combined acid-base disorders, i.e. combination of two or more acid-base disorders. The combined acid-base disorder may be consequence of one disease (e.g.: in an obstructive lung disease a RAC may develop together with a lactic MAC), but also two or more different diseases (e.g.: patient with chronic obstructive pulmonary disease combined with severe vomiting can have combined RAC, MAC and MAL disorder).

Any acid-base disorder, acidosis or alkalosis, induces the *compensatory response* of the organism, which tries to restore the pH to normal. Metabolic disorders are compensated by respiratory system (hyper- or hypoventilation) and kidneys compensate respiratory disorders (by increased or decreased retention of bicarbonate) (Tab. 1).

Tab. 1.	Acid-base disorders classification		
Acid-base	Laboratory	Causes	Compensation
disorder	findings		
MAC	рН < 7,36	Ketoacidosis (diabetes mellitus), lactic acidosis (cardio-	Increased excretion
	HCO₃ ⁻ < 22 mmol/l	pulmonal disorders, shock), intoxication with substances	of CO ₂ by lungs -
		in the metabolism of which acids are formed (ethanol $ ightarrow$	hyperventilation
		acetic acid), renal insufficiency, renal tubular acidosis	
		type I and II	
MAL	pH > 7,44	Excessive loss of HCl by vomiting, antacids overdose,	Decreased excretion
			of CO ₂ by lungs -
		(hyperaldosteronism)	hypoventilation
RAC	рН < 7,36	Disorders of ventilation (hypoventilation) due to inhibition	Decreased excretion
	pCO ₂ > 5,8 kPa	of the respiratory centre (sedatives, hypnotics), damage	(increased retention)
		of muscles or nerves (muscular dystrophy), respiratory	of HCO₃ ⁻ by kidneys
		diseases (chronic lung obstruction), inappropriate artificial	
		ventilation	
RAL	pH > 7,44	Hyperventilation - fear, hysteria, fever, sepsis, anemia,	Increased excretion
	pCO ₂ < 4,8 kPa	altitude disease	of HCO ₃ ⁻ by kidneys

Assessment of acid-base disorders


Acid-base parameters are determined from the capillary (ear, tip of finger) or from the artery (a. radialis) blood sample.

The classic method of evaluating the acid-base balance is based on the Henderson-Hasselbalch equation for the bicarbonate buffer system and is based on an assessment of three basic laboratory parameters: pH, pCO_2 and HCO_3^- concentration.

Henderson-Hasselbalch equation:

 $pH = pK + log \frac{[HCO_3]}{[H_2CO_3]}$

Tab. 2.	Overview and interpretation of acid-base parameters		
Parameter	rPhysiological Interpretation		
	value		
рН	1/4 + 0.04	pH of blood below 7.36 is acidemia , pH higher than 7.44 is alkalemia . The range	
		of blood pH values compatible with life is from 6.8 to 7.7.	
pCO ₂	5,3 ± 0,5 kPa	pCO ₂ below 4,8 kPa is hypocapnia , pCO ₂ higher than 5,8 kPa is hypercapnia.	
HCO	mmol/l	The so-called actual bicarbonates are calculated from the measured pH and pCO ₂	
		values according to the Henderson-Hasselbalchic equation. The concentration of	
		HCO₃ ⁻ in the blood below 22 mmol/l is hypobasemia , a concentration higher than	
		26 mmol/l is hyperbasemia .	
pO₂	1100 ± 133 KPa	Decreased partial pressure of oxygen in the blood is hypoxemia , increased partial	
		pressure of oxygen in the blood is hyperoxemia.	
BE	0 ± 2,0 mmol/l	The base excess refers to an excess (+BE) or a deficit in the amount of base	
		present in the blood (-BE).	
Δ(-	$15,2 \pm 1,6$	Anion gap represents the concentration of all the unmeasured anions in the	
		plasma (lactate, keto acids, sulphates, phosphates). AG is calculated from the	
		following formula: AG = (Na ⁺ + K ⁺) – (Cl ⁻ + HCO ₃ ⁻).	
BB	42 ± 2 mmol/l	Buffer base is the sum of all "strong" bases in the blood.	

Acid-base normogram

- N Normal area of acid-base equilibrium
- 1 MAC non-compensated
- 2 MAC partly compensated
- 3a Acidosis non-compensated combined MAC + RAL
- 3b Compensated acid-base equilibrium combined MAC + RAL
- 4 RAL partly compensated
- 5 RAL non compensated
- 6 Alkalosis mixed, RAL + MAL
- 7 MAL non compensated
- 8 MAL partly compensated
- 9a Acidosis non-compensated combined MAL + RAC
- 9b Compensated acid-base equilibrium combined MAL + RAC
- 9c Alcalosis non-compensated combined MAL + RAC
- 10 RAC partly compensated
- 11 RAC non compensated

12

Acidosis, mixed RAC + MAC

Empirical calculations of acid-base disorders:	
Metabolic acidosis:	Respiratory acidosis:
$\Delta pCO_2 = 0,16 \times \Delta [HCO_3^{-}] \pm 0,2$	$\Delta[HCO_3^{-}] = 2,63 \text{ x} \Delta pCO_2 \pm 2,0$
Δ = deviation of the measured value from the average	Δ = deviation of the measured value from the average
Metabolic alkalosis:	Respiratory alkalosis:
$\Delta pCO_2 = 0,093 \times \Delta [HCO_3^{-}] \pm 0,2$	$\Delta[HCO_3^{-}] = 3,76 \text{ x } \Delta \text{ pCO}_2 \pm 2,0$
Δ = Deviation of the measured value from the average	Δ = deviation of the measured value from the average
Metabolic disorders:	Respiratory disorders:
The pH and $[HCO_3^-]$ relationship expresses the equation:	Estimation of pH fluctuations in respiratory disorders
$[HCO_3^-] + 15 = the last two numbers of pH$	pH = 0,056 x Δ pCO ₂ ± 0,02
	Δ = deviation of the measured value from the average

Case studies Simple acid-base disorders

Case study 1

A 19 year old pregnant patient was admitted with a history of polyuria and thirst. She felt ill and was presented to hospital.

Biochemistry: Na⁺ = 136 mmol/l, K⁺ = 4.8 mmol/l, glucose = 19.0 mmol/l,

Arterial blood gases: pH 7.26, pCO₂ 3.13 kPa, pO₂ 17 kPa, HCO₃ 9.1 mmol/l.

Characterize this acid-base balance disorder. What kind of breathing pattern is typical for these states? What is the presumable disease patent is suffering from?

Acid-base balance disorder:

Breathing pattern:

Diagnosis:

Case study 2

The patient with the duodenal peptic ulcer disease was uncontrollable treated by NaHCO₃. During control his laboratory parameters were as follows: pH = 7.50, $pCO_2 = 6.13$ kPa, $HCO_3^- = 36.0$ mmol/l. Characterize this acid-base balance disorder. What is the presumable cause of the patient's problems? Acid-base balance disorder: Explanation:

Case study 3

The middle-aged obese man was admitted following a motor vehicle crash. His major injury was chest trauma with a small right pneumothorax and at least five fractured ribs on the right. There was no head or neck injury. Biochemistry: Na⁺ = 138 mmol/l, K⁺ = 3.9 mmol/l, Cl⁻ = 103 mmol/l, glucose = 4.89 mmo/l. Arterial blood gases: pH = 7.18, pCO₂ = 9.73 kPa, pO₂ = 9.3 kPa, HCO₃ = 27mmol/l.

Characterize this acid-base balance disorder. What organ (organs) typically compensate this ABB disorder? Acid-base balance disorder:

Compensation by:

Case study 4

A 20 year old man presented with sudden onset of muscle weakness in arms and legs. There were no other neurological abnormalities, in particular his level of consciousness was normal. There were no sensory abnormalities. Mild constipation was present.

Biochemistry: $Na^+ = 143 \text{ mmol/l}$, $K^+ = 2.0 \text{ mmol/l}$, $Cl^- = 101 \text{ mmol/l}$, glucose = 4.89 mmo/l.

Arterial blood gases: pH = 7.49, $pCO_2 = 6.9$ kPa, $pO_2 = 13$ kPa, $HCO_3 = 39$ mmol/l.

Characterize this acid-base balance disorder. How this ABB disorder is typically compensated? Which from mentioned parameters could cause muscle weakness?

Acid-base balance disorder:

Compensation:

Cause of muscle weakness:

Case study 5

A 65 year old lady with a history of chronic obstructive lung disease and **bronchiectasis** presented with a 2 hours history of worsening dyspnoea. Bilateral wheezing was present. She was alert, orientated, haemodynamically stable and pupil size was normal.

Biochemistry: Na⁺ = 135mmol/l, K⁺ = 4.1mmol/l, Cl⁻ = 94mmol/l, glucose =5.8mmo/l.

Arterial blood gases: pH = 7.28, $pCO_2 = 8.94$ kPa, $pO_2 = 7.03$ kPa, $HCO_3 = 34$ mmol/l.

Characterize this acid-base balance disorder. What organ (organs) typically compensate this ABB disorder? Acid-base balance disorder:

Compensation by:

Combined acid-base disorders

Case study 1

A woman, 68 years old, with chronic obstructive pulmonary disease was transported to the hospital. Two days before she had epigastric pain with repeated strong vomiting. During hospitalization, severe dyspnoea is present. Laboratory parameters: pH = 7.38, $pCO_2 = 9.3$ kPa, $HCO_3^- = 43$ mmol/l, $pO_2 = 6.8$ kPa, BE = + 19 mmol/l, Na⁺ = 136 mmol/l, K⁺ = 2.8 mmol/l, Cl⁻ = 71 mmol/l

What acid-base balance disorder(s) the patient suffer from?

Explain, why do you anticipate this acid-base disorder(s)?

Calculate anion gap (AG). What information does this result provide?

Case study 2

A young man, aged 15, was transported into hospital in comatous state. His breath smells like fruits. Patient's condition is further complicated due to severe pneumonia.

Laboratory values: pH = 7.10, $pCO_2 = 7.7$ kPa, $HCO_3 = 17.5$ mmol/l, BE = -13.5 mmol/l, glycemia = 19.6 mmol/l, ketone bodies in urine = +++.

What type of acid-base balance disorder is present in this case?

Explain why you suppose this disorder(s)?

What is the primal diagnosis (not the complicating one)?

Case study 3

Woman, aged 43, was hospitalised at the surgery clinic with diagnosis of acute pancreatitis, status post colica biliaris bilat. Repeated episodes of vomiting recorded. Significant anorexia is present, the patient has not eaten for longer time. Chest X-ray shows bilateral disseminated shadowing over the lungs, patient is dyspnoic. Laboratory values: pH = 7,43, $pCO_2 = 4,9$ kPa, $pO_2 = 8,9$ kPa, $HCO_3^- = 24,5$ mmol/l, BE = + 0,5 mmol/l Are acid-base balance values out of reference range? Is acid-base disorder present in this patient? If yes, please specify:

Explain why you suppose this disorder(s):