Academic lectures for general medicine Summer course 3rd year Updated 2001- 2011 SPECIAL PATHOPHYSIOLOGY

## **ENDOCRINE SYSTEM 2**

R. A. Benacka, MD, PhD, prof. Department of Pathophysiology Medical faculty, Safarik University, Košice

Figures and tables in this presentation were adapted from various printed and electronic resorces and serve strictly for educational purposes.

# **Thyroid gland**

- Physiological review
- Hyperthyroidism
- Congenital hypothyreoidism
- Hypothyreoidism in adulthood
- Goiter
- Thyroid tumors

### **Thyroid gland – anatomy and physiology**

- Largest endocrine organ in the body synthetizing, storing, secreting thyroxine (T4) and triiodothyronine (T3) in response to TRH and TSH.
- Butterfly-shaped organ (weight 15–25 g) located at the base of the neck on the anterior surface of the trachea.
- Lobules of spherical follicles lined by cuboidal-to-flat follicular epithelial cells 50– 500 um filled with colloid.
- C cells (produce calcitonin (at the junction of the upper and middle third of both thyroid lobes)



### Thyroid gland (TG) – anatomy and physiology

- Axis: hypothalamus (TRH) -> pituitary function (TSH) -> thyroid; iodine access important
- Iodination of tyrosine (MIT = monoiodotyrosine, DIT = diiodotyrosine)
- Coupling MIT + DIT together to form lipophilic T4 (90%) & T3 (10%); storing them bounds to TG
- Blood transport of T3 & T4 bound to transthyrenin (TBG), albumin & pre-albumin.
- Increase of basal metabolic rate
- Improves cardiac contractility
- Increases the gain of catecholamines
- Increases bowel motility
- Increases speed of muscle contraction
- Decreases cholesterol (LDL)
- Required for proper fetal neural growth





I COOH 3,3'5-Triiodo-L-Thyronine (T<sub>3</sub>)



COOH



### **Physiologic Effects of Thyroid Hormones**

| Target Tissue  | Effect                         | Mechanism                                                                                                                                                                                                 |  |
|----------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Heart          | Chronotropic                   | <ul> <li>Increase number and affinity of adrenergic receptors.</li> </ul>                                                                                                                                 |  |
|                | Inotropic                      | <ul> <li>Enhance responses to circulating catecholamines.</li> <li>Increase proportion of alpha-myosin heavy chain (with higher ATPase activity).</li> </ul>                                              |  |
| Adipose tissue | Catabolic                      | Stimulate lipolysis                                                                                                                                                                                       |  |
| Muscle         | Catabolic                      | Increase protein breakdown.                                                                                                                                                                               |  |
| Bone           | Developmental<br>and metabolic | <ul> <li>Promote normal growth and skeletal development;<br/>accelerate bone turnover.</li> </ul>                                                                                                         |  |
| Nervous system | Developmental                  | <ul> <li>Promote normal brain development.</li> </ul>                                                                                                                                                     |  |
| Gut            | Metabolic                      | <ul> <li>Increase rate of carbohydrate absorption.</li> </ul>                                                                                                                                             |  |
| Lipoprotein    | Metabolic                      | Stimulate formation of LDL receptors.                                                                                                                                                                     |  |
| Other          | Metabolic<br>Calorigenic       | <ul> <li>Stimulate oxygen consumption by metabolically active tissues (exceptions: adult brain, testes, uterus, lymph nodes, spleen, anterior pituitary).</li> <li>Increase of metabolic rate.</li> </ul> |  |



# Hyperthyroidism

## Hyperthyroidism: Causes

| Etiologic Classification                             | Pathogenetic Mechanism                                                      |  |  |  |
|------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|
| Thyroid hormone overproduction                       |                                                                             |  |  |  |
| Graves' disease                                      | Thyroid-stimulating hormone receptor-stimulating antibody (TSH-R [stim] Ab) |  |  |  |
| Toxic multinodular goiter                            | Autonomous hyperfunction                                                    |  |  |  |
| Follicular adenoma                                   | Autonomous hyperfunction                                                    |  |  |  |
| Pituitary adenoma                                    | TSH hypersecretion (rare)                                                   |  |  |  |
| Pituitary insensitivity                              | Resistance to thyroid hormone (rare)                                        |  |  |  |
| Hypothalamic disease                                 | Excess TRH production                                                       |  |  |  |
| Germ cell tumors: choriocarcinoma, hydatidiform mole | Human chorionic gonadotropin stimulation                                    |  |  |  |
| Struma ovarii (ovarian teratoma)                     | Functioning thyroid elements                                                |  |  |  |
| Metastatic follicular thyroid carcinoma              | Functioning metastases                                                      |  |  |  |
| Thyroid gland destruction                            |                                                                             |  |  |  |
| Lymphocytic thyroiditis                              | Release of stored hormone                                                   |  |  |  |
| Granulomatous (subacute) thyroiditis                 | Release of stored hormone                                                   |  |  |  |
| Hashimoto's thyroiditis                              | Transient release of stored hormone                                         |  |  |  |
| Other                                                |                                                                             |  |  |  |
| Thyrotoxicosis medicamentosa, factitia               | Ingestion of excessive exogenous thyroid hormone                            |  |  |  |

### **Hypertyroidism - symptoms**

- Alertness, emotional lability, nervousness, irritability, poor concentration
- Proximal muscle weakness (quadriceps, biceps), fatigability
- Hyperkinesia; rapid speech; fine tremor,
- Tachycardia, palpitations, widened pulse pressure, accentuated first heart sound;
- Dyspnea
- Voracious appetite, weight loss
- Hyperdefecation (increased frequency of bowel movements)
- Sweating, skin is fine, moist, warm;; onycholysis; Fine & abundant hair;
- Exopthlamos; periorbital edema, lid lag, proptosis, staring
- Heat intolerance



### **Clinical findings in hyperthyroidism**

### Symptoms

- Alertness, emotional lability, nervousness, irritability, poor concentration
- Proximal muscle weakness (quadriceps), fatigability
- Hyperkinesia, fine tremor, rapid speech,
- Palpitations, tachycardia, atrial fibrillation (resistant to digitalis), widened pulse pressure, accentuated first heart sound; Dyspnea
- Voracious appetite, weight loss,
- Hyperdefecation (increased frequency of bowel movements)
- Sweating, skin is fine, moist, warm; heat intolerance; fine & abundant hair; onycholysis
- Periorbital edema, lid lag, proptosis, stare, chemosis

### Laboratory findings

- Suppressed serum TSH level
- Elevated serum free thyroxine, elevated serum total T4, elevated resin T3 or T4 uptake, elevated free thyroxine index
- Increased radioiodine uptake by thyroid gland (some causes)
- Increased basal metabolic rate (BMR)
- Decreased serum cholesterol level

### **Graves disease**

- Most common cause of hyperthyroidism
- anti-TSH receptor antibodies with uncontrolled stimulatory effect on thyroid
- Dg:
  - Symptoms of hyperthyroidism
  - Extreme exopthalmos and goiter
  - $\downarrow \downarrow$  TSH, n/ $\uparrow$  T<sub>4</sub>, anti-TSH Ab
  - I<sup>123</sup> increased uptake.
- Treatments
  - Pharm Propothyouracil, Methimazole, Propranolol
  - Surgical Subtotal Thyroidectomy
  - Radiation RAI ablation [I<sup>131</sup>(μCi/g)] x weight / %RAIU]



Graves' acropachy

**Exopthalmos**, goiter











Exopthalmic goiter in 5y - old girl. Common in adults very rare in kids. Symptoms: nervousness, bulging of the eyes, tachycardia, underweight, enlarged thyroid

### **Graves' Disease and Hashimoto's Thyroiditis** - Autoimmune Disorders Associated with them



### **Graves' Disease and Hashimoto's Thyroiditis Histological comparisons**

Normal





Hashimoto's disease



Numerous lymphocytes and plasma cells

Scattered follicles, often markedly eosinophilic cytoplasm (Hürthle cells)

Marked fibrosis in late stages





Laboratory findings



Moderately elevated

Decreased TSH Increased free T<sub>4</sub> Increased total T<sub>3</sub> Undetectable TSH-receptor antibodies Decreased total and HDL cholesterol Increased sex hormone–binding globulin Increased estradiol (in men and women) Increased osteocalcin and bone-specific alkaline phosphatase



Severe progressive ophthalmopathy



# Hypothyroidism

## Hypothyroidism

### Forms of hypothyroidism

- Primary malfunction in thyroid gland
- Secondary pituitary failure
- Tertiary Hypothalamic failure
- Peripheral resistance inresponsiveness of tissues to T3 &T4

### Laboratory findings

- Increased serum TSH level
- Decreased serum free thyroxine, decreased serum total T4 and T3 decreased T3 or T4 uptake; decreased free thyroxine index
- Cause is determined by geography

#### Diagnosis

- Low FT4, High TSH (Primary, check for antibodies)
- Low FT4, Low TSH (Secondary or Tertiary, TRH stimulation test, MRI)

#### Treatment

Levothyroxine (T4) due to longer half

#### SECONDARY CENTRAL (HYPOPITUITARY) HYPOTHYROIDISM

PIT-1 mutations : Deficiency of TSH, growth hormone, and prolactin

PROP-1 mutations: Deficiency of TSH, GH, prolactin, LH, FSH, ACTH

Thyrotropin-releasing hormone (TRH) deficiency; Isolated?

Multiple hypothalamic deficiencies (e.g., septo-optic dysplasia)

TRH unresponsiveness Mutations in TRH receptor

TSH deficiency - Mutations in  $\beta$ -chain

Multiple pituitary deficiencies (e.g., craniopharyngioma)

TSH unresponsiveness Gsa mutation (e.g., type IA)

Mutation in TSH receptor

#### PRIMARY HYPOTHYROIDISM (THYROID)

Defect of fetal thyroid development : Aplasia, hypoplasia, ectopia (dysgenesis)

Defect in thyroid hormone synthesis (e.g., goitrous hypothyroidism): lodide transport defect, Thyroid peroxidase defect,

Thyroid oxidase mutations: homozygotic permanent; heterozygotic - transient

Thyroglobulin synthesis defect, Deiodination defect

Defect in thyroid hormone transport

lodine deficiency (endemic goiter):

Neurologic type, Myxedematous type

Maternal antibodies: Thyrotropin receptor-blocking antibody (TRBAb, thyrotropin-binding inhibitor immunoglobulin)

Maternal medications: Radioiodine, iodides; Propylthiouracil, methimazole; Amiodarone

## 1. Congenital hypothyroidism (CH)

- <u>Df:</u> thyroid hormone deficiency present at birth; if <u>untreated</u> for months lead to growth delay and permanent mental retardation <u>(cretins)</u>.
- <u>Oc:</u> 1 from 4000 newborns has severe deficiency; <u>1 from 2300 have mild to partial !!!</u> Nongoitrous CH "most prevalent inborn endocrine disorder"
- <u>Et:</u> in past <u>endemic</u>, now gen., dev. tox. (<u>sporadic</u>)
  - Environmental iodine deficiency (endemic in past);
  - Hypoplasia; Athyreosis
  - Toxic dammage: ? organochlorine insecticides, dioxin-like chemicals in the milk of mothers
  - Immuno-damage maternal antibodies

#### Genetic:

- Defect of T4 and T3 synthesis in normal gland
- Deficiency of TSH, Resistance to TSH,
- Iodine trapping defect, thyroglobulin, and iodotyrosine deiodinase deficiency

#### <u>Sy:</u> CH goitrous (CHG) CH nonhoitrous (CHNG)

- Mild to severe thyroid deficiency
- No or only neglible effects after birth : excessive sleeping, reduced interest in nursing, poor muscle tone, low or hoarse cry, infrequent bowel movements, exaggerated jaundice, low body temperature.

- > ½ of cases of severe hypothyroidism were recognized in the first month of life. Poor delayed grow,
- After years untreated: recognizable facial and body features of cretinism. severe mental impairment, with an IQ < 80</li>

#### Very severe fetal deficiency (athyreosis):

- Larger anterior fontanel, persistence of a posterior fontanel, umbilical hernia, large tongue (macroglossia).
- Growth retardation, short stature, <u>short neck.</u> swelling of face/hands,legs, cool skin, dry skin,
- Neurological retardation: slow reflexes, possible deafness

| Туре  | Locus   | Gene                                                                                            | Result             |
|-------|---------|-------------------------------------------------------------------------------------------------|--------------------|
| CHNG1 | 2q13    | TSH-R; TSH receptor                                                                             | TSH resistance     |
| CHNG2 | 14q31.1 | <b>PAX8;</b> Paired box gene;<br>transcription factor; expression<br>of thyroid-specific genes. | Thyroid dysgenesis |
| CHNG3 | 15q25.3 | ?                                                                                               | TSH resistance     |
| CHNG4 | 1p13.2  | <b>TSHB</b> (beta chain of heterodimeric TSH)                                                   | TSH resistance     |
| CHNG5 | 5q35.1  | <b>NKX2-5;</b> NK2 homeobox 5;<br>Tissue specific gene expression                               | Thyroid dysgenesis |

### Cretinism

mental and physical retardation resulting from <u>untreated congenital hypothyroidism</u>, usually due to iodine deficiency from birth because of low iodine levels in the soil and food sources







### 2. Postpubertal hypothyroidism - myxedema

- Decreased vigor, lethargy, slow thinking, mental clouding, depression
- Fatigability, coldness, weight gain, constipation, low voice
- Round puffy face; periorbital edema, swelling of face/hands/legs, slow reflexes, myxedema
- Enlarged tongue, slow speech; hoarseness,
- Cold, dry, thick, scaling skin; Feeling cold, cold intolerance
- Dry, coarse, brittle thickened hair; hair loss; longitudinally ridged nails;
- Loss of appetite; weight gain, constipation
- Ascites; pericardial effusion; ankle edema
- Menorrhagia; diminished libido
- Hypokinesia; generalized muscle weakness; delayed relaxation of deep tendon reflexes
- Cardiac enlargement; bradycardia, indistinct heart sounds



### Postpubertal hypothyroidism - myxedema



Myxedema: periorbital puffiness closing eyes, after thyroxine therapy (pericardial effusion).



Myxedema, coarse hair, dry skin, pasty colored face: elderly woman stopped medication

Post-operative myxedema. Basal metabolic rate 40%



#### Symptoms

- Decreased vigor, lethargy, slow thinking, mental clouding, depression
- Round puffy face; periorbital edema,
- Enlarged tongue, slow speech; hoarseness,
- Cold, dry, thick, scaling skin; dry, coarse, brittle thickened hair; hair loss; longitudinally ridged nails; feeling cold, cold intolerance
- Loss of appetite; weight gain, constipation
- Ascites; pericardial effusion; ankle edema
- Menorrhagia; diminished libido
- Hypokinesia; generalized muscle weakness; delayed relaxation of deep tendon reflexes
- Cardiac enlargement; bradycardia, indistinct heart sounds





### Goiter

### Endemic goiter

- Caused by dietary deficiency of lodide
- Increased TSH stimulates gland growth
- Also results in cretinism
- Goiter in developed countries
  - Hashimoto's thryoiditis
  - Subacute thyroiditis
- Other causes
  - Excess Iodide (Amiodarone, Kelp, Lithiun
  - Adenoma, Malignancy
  - Genetic / Familial hormone synthesis defecte











Remainder of gland-involution

Adenoma-hyperplasia

## **Etiology of goiter**

- I. Goiter associated with hypo & euthyroidism
- Iodine turnover
  - Iodine deficiency; defective transport
  - Iodine excess (secretion of hormone)
- Hormone biosynthesis
  - <u>Defective organification of iodide</u> : absence/ reduction of peroxidase; abnormal peroxidase
  - <u>Thyroglobulin (TG)</u>: synthesis of an *abnormal TC* impaired proteolysis of TG
  - Iodotyrosine : defective deiodination
  - Congenital disorders
- Exogenous substances and drugs (hormone biosynthesis)
  - <u>Goitrogen</u> in diet, drinking water or medication
  - Thioamides (propylthiouracil, methimazole, carbimazole), Thiocyanates (nitroprusside), Anilir derivatives (sulfonylureas, sulfonamides, aminosalicylic acid, phenylbutazone, aminoglutethimide)
  - Lithium (secretion of hormone)

#### Resistance

 Pituitary and peripheral resistance to thyroid hormone (receptor defects)



Etiologic factors of nontoxic goiter

### Goiter

### II. Goiter associated with hyperthyroidism

- Graves' disease (TSH-R [stim] Ab stimulation of gland)
- Toxic multinodular goiter (Autonomous hyperfunction)
- Germ cell tumor (hCG stimulation of gland)
- Pituitary adenoma (TSH overproduction)
- Thyroiditis ("injury" due to infiltration, and edema)





legative

legativ

### **Thyroid storm**

#### Causes

- Surgery, Radioactive Iodine, Therapy, Severe Illness
- Diagnosis
  - Clinical tachycardia, hyperpyrexia, thyrotoxicosis symptoms
  - Labs (Low TSH, High T4, FT4)

### Treatment

- Propranolol IV vs. Verapamil IV, Propylthiouracil, Methimazole
- Sodium Iodide, Acetamenophen, cooling blankets
- Plasmapheresis (rare), Surgical (rare)

## **Euthyroid goiter**

- Cause is an inactivation of 5'deiodinase, resulting in conversion of FT<sub>4</sub> to rT<sub>3</sub>.
- Occurs in critically ill patients; may occur with DM, malnutrition, iodine loads, or medications (Amiodarone, PTU, glucocorticoids)
- Treatment
  - Avoid above medications
  - Treat primary illness
  - T<sub>3</sub>, T<sub>4</sub> not helpful





## **Goiter gross anatomy**



Long-standing nodular goiter with hemorrhages, cyst formation, fibrosis, and calcification

#### Hashimoto thyroiditis

extrathyroidal lymphoid tissues





**Microscopy of Hashimoto Thyroiditis** Mixture of hyperplastic and atrophic follicles with diffuse lymphocytic infiltration

Thyroid peroxidase and thyroglobulin antibody concentrations can be measured in serum

#### Riedel thyroiditis CHRONIC LYMPHOCYTIC THYROIDITIS AND FIBROUS THYROIDITIS

1





Microscopy of Riedel Thyroiditis Macrophage and eosinophilic infiltration with atrophy of follicles (*arrows*) and marked diffuse fibrosis



Diffuse infiltration of thyroid stroma







# Thyroid gland neoplasms







### Model of thyroid carcinogenesis

Risk factors (exposure to radiation) genomic instability through direct and indirect mechanisms,

early genetic alterations involve MAPK signalling pathway increases genomic instability, activation of RET or BRAF

later genetic alterations involve signalling pathways, cell-cycle regulators and various adhesion molecules.

Accelerating the interactions between genomic instability and genetic alterations promotes progression from welldifferentiated to undifferentiated thyroid carcinoma.

three distinct pathways are proposed for neoplastic proliferation of thyroid follicular cells, including hyperfunctioning follicular thyroid adenoma (tumours that are almost always benign), follicular thyroid carcinoma and papillary thyroid carcinoma.

Underexpression of the cyclin-dependent-kinase inhibitor p27KIP1 and overexpression of cyclin D1 are strong predictors of lymph-node metastases in papillary thyroid carcinomas.

Most poorly differentiated and undifferentiated thyroid carcinomas are derived from pre-existing well-differentiated thyroid carcinoma through additional genetic events including catenin (*CTNNB1 gene*) nuclear accumulation and p53 inactivation, but *de novo* occurrence might also occur. GNAS1, guanine nucleotide-binding -subunit 1; PPARG, peroxisome proliferation-activated receptor- ; TSHR, thyroid





Copyright © 2006 Nature Publishing Group Nature Reviews | Cancer



bound form, Ras activates the kinase activity of BRAF and its downstream signalling cascade. BRAF phosphorylates the mitogen-activated protein kinase (MAPK) kinase (MEK), which phosphorylates and activates extracellular-signal-regulated kinase (ERK). Activated ERK migrates to the nucleus where it phosphorylates and activates various transcription factors that are involved in cell proliferation and differentiation, such as MYC and ELK1.

Kondo *et al. Nature Reviews Cancer* **6**, 292–306 (April 2006) | doi:10.1038/nrc1836



Autocrine and paracrine growth-factor signalling has been implicated in thyroid carcinogenesis. Growth factors and their receptors that signal between stromal and endothelial/carcinoma cells include: fibroblast growth factor (FGF)–FGF receptor (FGFR), epidermal growth factor (EGF)–EGF receptor (EGFR), hepatocyte growth factor (HGF)–MET, and vascular endothelial growth factor (VEGF)–VEGF receptor (VEGFR). In normal endothelial cells, -catenin binds the cytoplasmic domain of E-cadherin as an adhesive component, mediating the Wnt signalling pathway. Defects in Wnt signalling occur in carcinoma cells, resulting in -catenin stabilization and translocation to the nucleus, and expression of cyclin D1 and MYC. Additionally, loss of E-cadherin is associated with increased invasion and cell motility. Fibronectin is upregulated at the protein and mRNA levels in papillary thyroid carcinoma, but its effect on tumour cell proliferation, adhesion and migration remains to be determined.

Cyclin D1 and cyclin E1 cooperate to control the G1 to S phase transition through interactions with retinoblastoma protein (RB). Cyclin D1 and cyclin E1 heterodimerize with cyclin-dependent kinases (CDKs) 4 and 2, respectively, to inactivate the tumour suppressor RB by phosphorylation. Active RB functions as a repressor of E2F transcription factors, whereas inactivation (phosphorylation) of RB allows E2F transcriptional activity. E2F activates the transcription of genes that are involved in the G1 to S phase transition, such as DNA polymerase and thymidine kinase. The CDK inhibitors p16INK4A, p21CIP1 and p27KIP1 impair the activity of cyclin–CDK complexes, thereby preventing phosphorylation of RB. The CDK inhibitors therefore function as tumour suppressors. The tumour suppressor p53 induces cell-cycle arrest by upregulating p21CIP1, which initiates apoptosis. The function of p53 is controlled by negative regulators, including MDM2. The MDM2 protein targets p53 for ubiquitin-mediated degradation, constituting a feedback loop to

maintain a low concentration of p53 in the cells.



Copyright @ 2006 Nature Publishing Group Nature Reviews | Cancer

