Academic lectures for students of medical schools – 3rd Year updated 2004 - 2015

GENERAL PATHOPHYSIOLOGY

Hypoxia

R.A.Benacka, MD, PhD Department of Pathophysiology Medical faculty P.J.Safarik, Košice

Templates, figures and tables herein might be modified and combined from various printed and internet resources and serve exclusively for educational purposes

Definitions, terms

Hypoxia = fall of <u>oxygen in tissues</u> that compromise aerobic metabolism to metabolic needs leading to anaerobic switch, triggering local and systemic compensations or adaptations (small variations in tissue & arterial oxygen concentrations can be part of the normal physiology)

!! Direct tissue measurement of O_2 is rare (tissue needle oxymetry, cutaneous probes in neonates). Capillary oxyhemoglobin saturation together with pulse rate is provided by oximeters (finger, ear); Deeper tissue oxygenation can be estimated through NIRS, near-infrared spectroscopy.

- Focal (local) hypoxia = restricted to an organ, tissue, body part; in within one organ it denotes sekective area (e.g; focal brain hypoxia),
- Global (generalized) hypoxia = effect is overall, unselective, unrestricted (e.g. global brain hypoxia);
- ! Distinct focal\global effects can be seen in ischemic hypoxia = ischemia
- Anoxia = lack of oxygen (refers rather exterior gas breathing conditions; in within the body or tissues total lakof O2 is rare)
- Hypoxemia = lack of O₂ in blood (arterial); hypoxia may occur w/o hypoxemia

Regional deep – tissue oximetry

INVOS® Cerebral/Somatic Oximeter

Masimo O3 Regional Cerebral Oxim

5 % in

Hamamatsu NIRO monitor (NIRO-200)

Funcional fNIRS + quantitative EEG (qEEG) + (fNRM) in monitoring of cognitive processing

- NIRS measuring level of oxygenatiion in various brain structures indicates the intensity of metabolism and indirectly areas involved in specific tasks.
- aEEG or qEEG mapping may help in combination of data

Partial oxygen levels

- P_{atm} (sea level) = 760 mmHg (torr), 101,325 kPa = 1 atm = 1.01325 ba =14.696 ps
- P_{atm}O₂ = 20,93%= 159 mmHg ambient air O₂ pressure differ
 P_AO₂ = 105-112 mmHg (alveolar) lowered by partial pressure of water vapours at 37°C (- 47 mm Hg) is the water vapor]) and CO2
- $P_aO_2 = 95 100 \text{ mmHg} \text{ (arterial)}$ part of O_2 diffuses through vessels $P_kO_2 = 50-60 \text{ mmHg} \text{ (capillary)}$ mixtured blood O_2
- $P_{exc}O_2 = 30-40 \text{ mmHg}$ (interstitial)
- P_{inc}O₂ = 10 mmHg (intracell.)
- $P_{mit}O_2 = 3 \text{ mmHg} (mitochon.)$
- $P_{vn}O_2 = 45-50 \text{ mmHg}$ (venular)
- P_vO₂ = 38-43 mmHg (venous)

Physiological principles

Differential diagnostics of hypoxia

TYPE OF HYPOXIA	[O2]a (vol %)	[O2]v (vol %)	C.O. (I/min)	Vo2 (ml/min)
Normoxia	20	15	5	250
Stagnant	Normal	Ļ	↓↓ ↓	Normal
Нурохіс	↓↓	Ļ	↑	Normal
Anemic	↓↓	Ļ	Normal or ↑	Normal
Histotoxic	Normal	↑	Normal	↓↓

FiO2 %	Symptoms of ambient hypoxic hypoxia	
16-21 %	little changes	
13-16%	Tachypnoea, hyperpnoea, tachycardia, euphoria, headache	
10-13 %	Altered judgement, confusion, muscular fatigue	
6-10 %	Nausea, vomiting, lethargy, air hunger, severe incoordination	
< 6 %	Gasping, seisures, stupor, coma, death	

TYPES OF HYPOXIA – HYPOXIC HYPOXIA

<u>Def</u>.: low arterial pO2 when oxygen carrying capacity of blood and rate of blood flow to tissues are normal or elevated;

<u>Characteristics</u>: 1. \clubsuit arterial pO₂ (PaO₂), 2. \clubsuit arterial O₂ content 3. \clubsuit arterial % O₂ \clubsuit S_aO2 4. \clubsuit arterio-venous pO2 difference (P_{a-v} O₂)

- Etio: **External-** low pO2 in a breathing gas (air or artefitial gas mixtures)
 - Mountaining high altitude, acute decompression (planes, etc.), diving with closed-circuit rebreather systems,
 - preterm birth in neonates suffocation in birth channel
- Path: Internal from the upper airways down to pulmonary capillary
 - Decreased pulmonary ventilation and air distribution,
 - failure in central regul. central hypopnoea, apnoe (sleep breath. dis., morphin, barbitur., etc.), res. rhythm dis. (coma)
 - failure in periphery: UAW obstruction suffocation, Bronchial disease asthma, cystic fibrosis), extrapulmon.: restricted resp. movements (fullness in abdomen, rib cage deformities, fractures, myopathy, pneumothorax, etc.)
 - Defect in exchange of gases ↓ alveolar-capillary diffusion,
 - Venous arterial shunts

Hypoxic hypoxia

- Atmospheric pressure = (barometric) the pressure exerted by the weight of air in the atmosphere of Earth force 200 -(across one square centimeter) is a pressure of 10.1 N/cm2
- decreases with distance above the Earth's surface in an app. exponential manner
 90
- Normal sea level: 760 mmHg 80
- In 5500 m is only 1/2 the normal, so PO_2) of moist inspired gas is (380-47) X 60 0.2093 = 70 (47 mm Hg is the partial pressure of water vapor 50 at body temperature [ie, $37^{\circ}C$]. 40
- At the summit of Mount Everest (8848 m), inspired PO₂ ³⁰ is only 43. In spite of hypoxia associated with high altitude, ²⁰ approximately 15 million ¹⁰ people live at elevations over 3050 m, and some permanent ⁰ residents live higher than 4900 m in the Andes A remarkable

Manifestation of high altitude sickness

"If it could be demonstrated that any complex organ existed which could not possibly have been formed by numerous, successive, slight modifications, my theory would absolutely break down."

- Charles Darwin (Origin of Spec

RESPIRATORY STRUCTURES

Smith et al. 1991, 2000

PERIPHERAL O₂ – CHEMORECEPTION

- carotide receptors (pO₂, pCO₂, pH) -> n.IX -> medulla
- aortal receptors (pO₂, pCO₂) -> n.X -> medulla
- arterial O₂ sensors (pO₂, pH) -> veget. Afferents, local
- pulmonary sensors (pO₂, pH) -> n.X, local reflexes

Receptors in glomus caroticum:

- blood flow 2 l/min/100 g
- stimulated when $P_aO_2 < 60 \text{ mmHg}$
- aditional stimulation by acidosis and hypercapnia
- inhibited by alkalosis and hypocapnia

Central O₂ and CO_{2/}pH– receptive areas

Several brain areas show **O**₂**- sensitivity** in respiratory stimulation:

- lateral medullary reticular formation (RF) Arita et al. (1988)
- RF in caudal and rostral pons St.John (1977), Edelman et. al (1991)
- raphe nuclei Millhorn et al. (1980,1984)
- diencephaslic locations Tenney a Ou (1976)
- caudal hypothalamus Horn a Waldrop (1997)
- ventrolaterl reticular formation PreBötzinger complex Solomon et al. (2000)

Central pH/CO₂ – sensitive structures in rostroventral medullary surface – classical central chemorecptors

pH/CO₂ – sensitive chemoreception

 $CO_2 \rightarrow O_2$

 $O_2 \rightarrow CO_2$

Regional Differences in Blood Flow and Ventilation

At the bottom of the lung

Ventilation < Blood Flow

 $V_A/Q < 1$

Not all of the blood gets oxygenated

"Physiologic Shunt"

NON-EUPNOIC RHYTHMS

Respiratory diseases

Obstructive diseases (OPD)

- restricted expiratory force
- $-\downarrow \text{FEV}_1 \uparrow \text{compliance, elasticity}$
 - Chronic bronchitis
 - Emphysema
 - Asthma
 - Bronchiectasia
 - Cystic fibrosis
 - Athelectasia (not pure OPD)

Restrictive diseases (RPD)

- reduced inspiratory + expiratory volumes
- \downarrow VC \downarrow compliance, elasticity
 - Interstitial diseases: pneumonia
 - Fibrosis of lungs –pneumoconiosis, asbestosis, silicosis, beryliosis, farmers lungs
 - Restriction to breathing: pneumothorax, ribcage malformities, fracture, obesity

Hypoxic hypoxia – Intrapulmonary causes

- obstructions (acute , chronic) related to pathways UAW, LAW; → decreased gas flow + exchange or impared air distribution, →non- ventilated areas
- impaired diffusion → alveolar-capillary pathway ; → alveolar edema, interstitial edema
- restrictions → limited volume/ time capacity (chest cage defects, fracture, pneumothorax, muscle weakness; pulmonary tissue limitations, parenchyme stiffness)

- Hyperplasia, metaplasia of mucous layer
- Hyperproduction of mucus
- Inflammation cell infiltrates
- Thikening of muscle layer spasms
- Airway collapsibility air trapping; expiratory limitation

Regional Differences in Blood Flow and Ventilation

In the middle of the lung

Ventilation \cong Blood Flow

 V_A/Q is approximately 1

Regional Differences in Blood Flow and Ventilation

At the top of the lung

Ventilation > Blood Flow

$$V_A/Q > 1$$

Physiologic Dead Space

TYPES OF HYPOXIA – HEMIC HYPOXIA

<u>Def:</u> arterial pO2 is normal but the amount of haemoglobin available to carry oxygen is reduced;

<u>Characteristics</u>: 1. Normal arterial pO2 ; 2. Arterial O2 content moderately reduced, SO2 reduced 3. A-V pO2 difference is normal

Causes:

- a) Course: Acute vs Chronic
- b) Reason:
- Hemorrhage & metabolic disorders (pH): high affinity to oxygen
- Anemia: sideropenic anemia (chronic bleeding), hemolytic anemia (trasfusion disord., blood donation
- Conversion of haemoglobin to some abnormal form
- Other: Smoking cabin contamination, engine exhaust fume Carbon Monoxide interferes with oxygen, binding to the blood
- Symptoms of hypoxia at lower altitudes, Most airlines recommend: No flight for 72 hours after donation of whole blood, No flight for 12 hours after donation of plasma

Oxygen Equilibrium (Dissociation) Curve

Oxygen-Hemoglobin Binding Affinity

The Haldane Effect

Deoxygenated blood (Hb) carries more CO₂ than oxygenated blood (Hb)

- CO₂ can bind to Hb (carbaminohaemoglobin).
- The binding of O_2 to Hb decreases the affinity of Hb for CO_2 .

Partial pressure of oxygen (mmHg)

In all 3 conditions the O_2 -haemoglobin saturation is 100% but the total O_2 content differs

Modification of Oxygen-Hb Binding

Temperature

• Temperature is elevated in metabolically active tissues (i.e., muscles)

 \succ Enhances O_2 unloading

• *Temperature is reduced in the lungs*

 \succ ↓ *p50:* ↑ *O*₂-*Hb binding affinity*

 \succ Enhances O_2 loading

- pH is reduced in metabolically active tissues (i.e., muscles)

 - \succ Enhances O_2 unloading
- Bohr Effect

Carbamino Effect

Carbon Monoxide (CO) Equilibrium Curves

TYPES OF HYPOXIA- CIRCULATORY HYPOXIA

<u>Def.</u>:Blood flow to the tissue is reduced so that adequate oxygen is not delivered to them despite normal arterial pO_2 , haemoglobin concentration and saturation.

Characteristics: 1. Normal arterial pO₂, 2. Normal arterial O₂ content,

3. Normal SaO₂ (%) saturation of Hb, 4. A-V difference higher than normal

Causes:

- Ischaemic circulatory failure,
- Cardiac: cardiac arrest, cardiac shock, (infarction, tamponade, pulmonary embolism),
- Arterial vascular:
- <u>a) acute:</u> vasospasms, vasoconstriction, vasoocclusion, embolism (atheroembolism, thrombembolism, gas or fat embolism);
- <u>b) chronic:</u> hypertension, atherosclerosis (partial occulusion,), arterial fibrosis, thromboangiitis obliterans (Winiwanter -Buerger dis.)
- AV- shunting:
- Venostatic venothrombosis, thrombophlebitis
- G forces from maneuvers (mostly aerobatic aircraft), Disease of the blood vessels, C Shock, Exposure to Cold, Sudden change in posture

TYPES OF HYPOXIA- CIRCULATORY HYPOXIA

Diabetic macrovasculopathy

Disorders of peripheral perfusion

Acrocyanosis

- Acrocyanosis decrease in oxygen & blood supply to the terminal parts (acral areas) of extremities due to constriction or spasm of small blood vessels caused b sympathetic nerves. Mainly, superfitial vessels near the surface of the skin are affected, mostly in hands and fingers.
- The hands and feet turn persistently blue (cyanosis), because HHb rises locally over 50 g/l and become colder and sweaty and lack pain feeling. Pulse is normal, which rules out ischaemia.
- Emotions and cooling the hands and worsen the symptoms etting blueish), warmth can decrease symptoms. It is benign. non-progressive, but persistent disease that is more often in women.
- Raynaud's disease differs from acrocyanosis in that it causes white and red skin coloration phases, not just bluish discoloration.

Raynaud disease

TYPES OF HYPOXIA - HISTOTOXIC

<u>Def</u>.: Manifestation of tissue hypoxia and anaerobic metabolism (lactate acidosis) despite **normoxemia or hyperoxemia** (inhalation of oxygen), optimal systemic circulation (blood pressure), optimal perfusion (estimated by NIRS or from PaO_2 and PvO_2).

<u>Characteristics</u>: 1. Normal arterial pO₂, 2. Normal arterial and venous O₂ content,
3. Normalsaturation of Hb SaO₂, 4. A-V difference less than normal

<u>Causes:</u> Tissues do not show extraction of O_2 from blood, while reasons are other than hemic (problem in blood itself).

- \checkmark ATP production by the mitochondria due to a defect in the cellular usage of oxygen
- Defective road of oxygen to cells (rare, O₂ as gas has no barriers for diffusion through extracellular space nor cell membranes
- Mitochondrial respiratory chain defect : Cyanate poisoning cytochrome inactivation (mitochondrias), Alcohol, Drugs: rotenone, antimycin A

TYPES OF HYPOXIA - HISTOTOXIC

Acute cyanide poisoning

- initial flushing (redness in cheeks), diaphoresis
- Lung entry: smoke, munition; : very fast onset,, 38% Tachycardia, cardiac arrest, 45% neurological synmptomsanxietry, agitation, confusion, bradypnoea – respiratory arrest
- GIT entry: Cholera-like gastrointestinal symptoms: vomiting, severe diarrhea (rice –watery, often bloody, acute distress, hypovolemic shock
- Skin and breath may smell of bitter almonds
- Cyanosis doe not occur

Manifestation of hypoxia

- Agitation or panic & anxiety due to lack of oxygen (4000m), personality change,
- Headache, hallucinations (above 7000 m)
- Nausea, vomiting, Dizziness, Hot and cold flashes
- Visual Impairment (colour vision, night vision, blurred)
- Tachycardia, tachyarrhythmias (atrial fibrillation) in predisposed
- Tachypnoe and hyperpnoe due to hypoxic compensation lead tob alkalosis
- Brain edema, pulmonary edema
- Cyanosis manifestation of increase of reduced hemoglobin; central is typical (native persons in Ands, Himalayas – bluish people)

Manifestations in stages

- Initial stage > 70-80 mmHg not generally aware of the effects of hypoxia, loss of night vision or color vision.
- Compensatory stage < 70 mmHg, compensated by hyperventilation, tachycardia etc., poor judgement, drowsiness(somnolency), tiredness</p>
- Disturbance stage physiological compensations do not provide adequate oxygen for the tissues, impaired in flight control, handwriting, speech, coordination, cyanosis, poor judgments and difficulty with simple tasks
- Critical Stage blackout, faint, stupor, coma

Laboratory data

Total content of oxygen in the blood (CaO2) = 20,7%

Tension of O_2 dissolved in the blood (PaO2) = 100 mmHg [100 x 0.003] = 0.3%

- O2 carried in the blood physically = 1,5% of the total content
- O2 carried bound in haemoglobin = 19,2 % of the total content

Normal arterial content of oxygen:

 $C_aO_2 = [O_2 \text{ sat } x \ 1.39 \ x \ Hb \ content \ \%] + [PaO_2 \ x \ 0.003]$ $C_aO_2 = [0.98 \ x \ 1.39 \ x \ 15] + [100 \ x \ 0.003] = \frac{20,7 \ vol.\%}{20,7 \ vol.\%}$ Data: $O_2 \text{ sat } \% = 0,98$; Hb content 150 g/l = 15 %, PaO2 = 100mmHg] Normal mixed venous content: <u>15 vol %</u> Arterial – venous difference: (A-V) <u>5 vol %</u>

Hypoxic hypoxia: $P_aO_2=50$ mmHg, other data are normal $C_aO_2 = [1.39 \times 0.85 \times 15] = [50 \times 0.003] = 18.0 \text{ vol\%}$ Anemic hypoxia: Hb% = 10%, other data are normal $C_aO_2 = [1.39 \times 0.98 \times 10] + [100 \times 0.003] = 14.2 \text{ vol.\%}$

Laboratory data

SvO2 - True mixed venous oxygen saturation

ScvO2 - Central venous oxygen saturation

- Low ScvO2
 - Increased need for oxygen in the tissues (hyperthermia, shivering, or exercise);
 - Decreased delivery of oxygen to the tissues (shock, anaemia, decreased cardiac output, systemic hypoxia).
- Very high ScvO₂
 - Decreased demands of tissues for O2 (hypothermia or when under the effects of a muscle relaxant)
 - Tisseas are unable to extract the oxygen (cyanide poisoning, anything else that interferes with mitochondrial function).

Normal conditions: critical oxygen extraction ratio $(ER_{O2}) = 70\%$, corresponding to an SvO₂ of around 30%. **Critically ill population**: critical ER_{O2} = 60%; SvO2 of around 40%.