Respiratory Failure

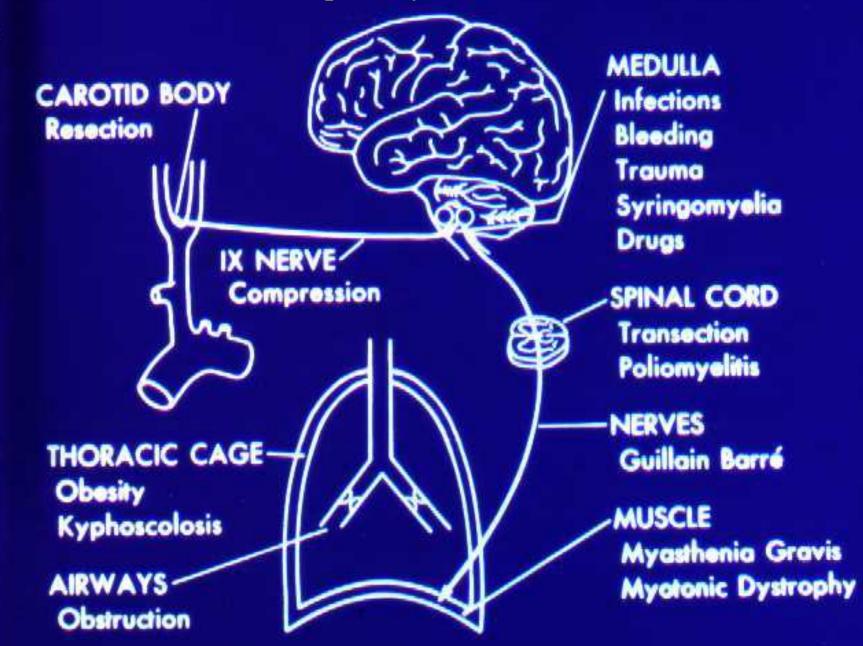
Dr. R. Benacka

Mechanisms

Definition

Definition

"inability of the lung to meet the metabolic demands of the body. This can be from failure of tissue oxygenation and/or failure of CO_2 homeostasis."


Clinically

Respiratory failure is defined as $PaO_2 < 60 \text{ mmHg}$ while breathing air, or a $PaCO_2 > 50 \text{ mmHg}$.

Areas that may be included

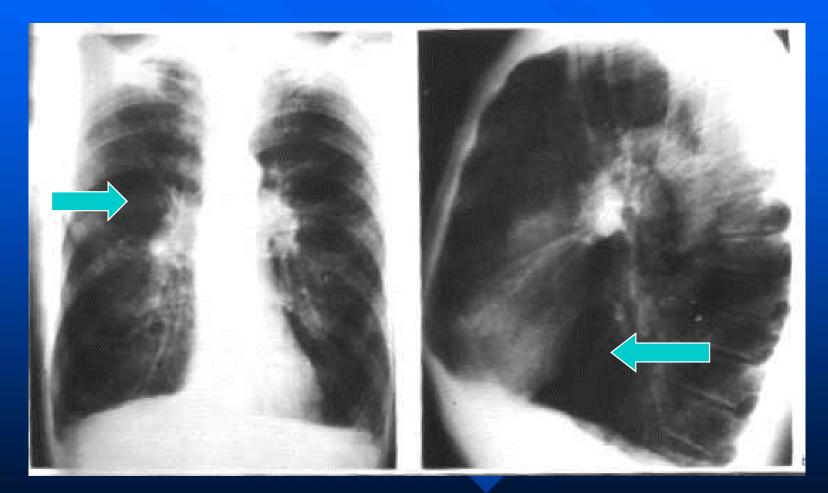
CNS (medulla) Peripheral nervous system (phrenic nerve) **Respiratory muscles - diaphragm** Chest wall - rib cage, spine Lung - interstitium Upper airways Bronchial tree Alveolar region – ducts, sacs, alveoli Pulmonary vasculature (primarily, secondarily)

Potential causes of Respiratory Failure

HYPOXEMIC RESPIRATORY FAILURE (TYPE 1)

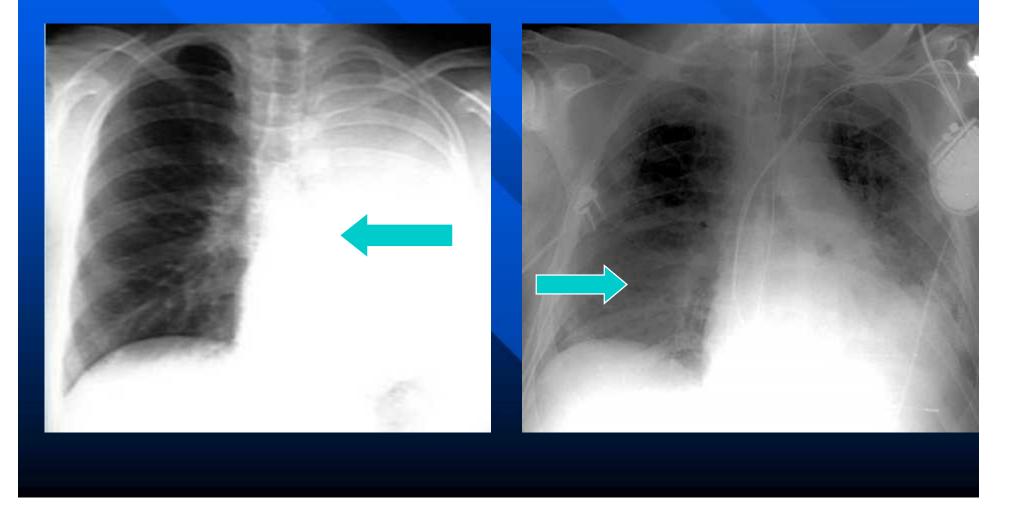
- $PaO_2 < 60mmHg$ with normal or low $PaCO_2 \rightarrow$ normal or high pH
- Most common form of respiratory failure
- Lung disease is severe to interfere with pulmonary O₂ exchange, but over all ventilation is maintained
- Physiologic causes: V/Q mismatch and shunt

HYPOXEMIC RESPIRATORY FAILURE CAUSES OF ARTERIAL HYPOXEMIA


- 1. \checkmark FiO₂
- 2. Hypoventilation $(\uparrow PaCO_2)$
- 3. V/Q mismatch (eg.COPD)
- 4. Diffusion limitation ?
- 5. Intrapulmonary shunt
 - pneumonia
 - Atelectasis
 - CHF (high pressure pulmonary edema)
 - ARDS (low pressure pulmonary edema)

Hypercapnic Respiratory failure

Causes


- Disorder of heart, lung or blood.
- Finding chest X-ray (CRX) abnormality:
- Normal or hyperinflation on CXR:
 - Cardiac shunt (right to left)
 - Asthma, COPD
 - Pulmonary embolism
- Focal infiltrates on CXR:
 - Atelectasis
 - Pneumonia
- Diffuse infiltrates on CXR:
 - Cardiogenic pulmonary Edema
 - Non cardiogenic pulmonary edema (ARDS)
 - Interstitial pneumonitis or fibrosis
 - Infections

EXAMPLES

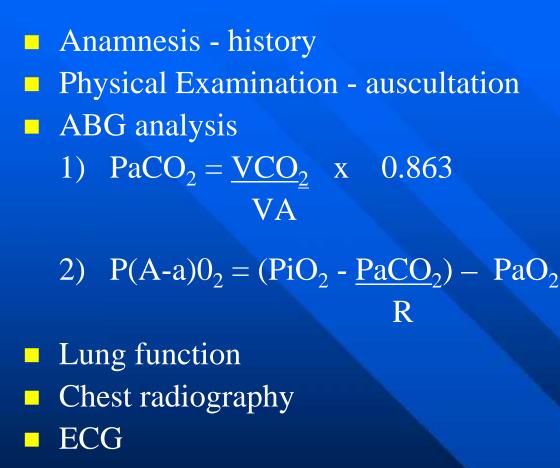
Hyperinflated Lungs COPD

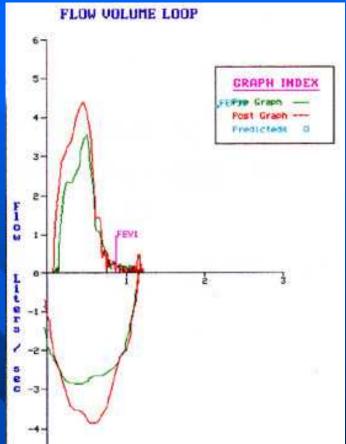
EXAMPLES Diffuse pulmonary Intrapulmonary shunt infiltrates

Hypercapnic Respiratory Failure (Type II, global) ■ Hypercapnia (PaCO₂ >50 mmHg) • Hypoxemia ($PaO_2 < 60 O_2 Sat < 90$) Respiratory acidosis pH < 7.30</p> Compensated by HCO₃⁻: » HCO₃ depends on duration of hypercapnia » Renal response occurs over days to weeks

Causes

Acute


- Brain dysfunction: respiratory centre failure- sedative drug over dose, tumor, central hypoventilation
- Hypothyroidism, Acute muscle weakness: myasthenia gravis, spinal injuries
- Severe lung disease: asthma, pneumonia
- Upper airways obstruction: foreign body, laryngeal edema


Chronic

- Muscle fatigue: Guillain-Barre, poliomyelitis
- Chest wall/Pleural diseases: kyphoscoliosis, pneumothorax, massive pleural effusion
- Airway obstruction: asthma, COPD, bronchiektasia, cystic fibrosis, tumor

Clinical Manifestations

ASSESSMENT OF PATIENT

Clinical manifestations

- Signs of HypoxemiaDecreased PO2
 - Dyspnea, tachypnea
 - Cyanosis
 - Restlessness
 - Apprehension
 - Confusion
 - Tachycardia
 - Dysrhythmias
 - HTN
 - Metabolic acidosis

Signs of Hypercapnia
Increased PCO₂

- Dyspnea \rightarrow resp. depression
- Headache
- Papilledema
- Tachycardia
- HTN
- Drowsiness, coma
- Systemic vasodialation
- Heart failure
- Respiratory acidosis

Clinical manifestations (1.1)

Cyanosis - unoxygenated hemoglobin 50 mg/l
 not a sensitive indicator

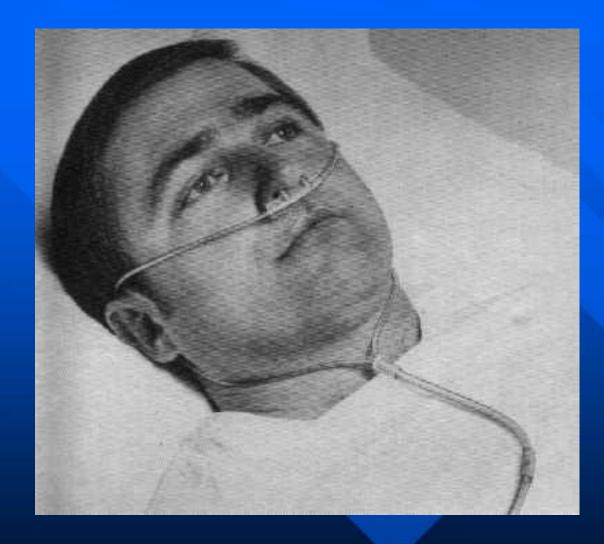
- Dyspnea secondary to hypercapnia and hypoxemia
- Paradoxical breathing
- Confusion, somnolence and coma
- Convulsions

Clinical manifestations (1.2)

- Circulatory changes- tachycardia, hypertension, hypotension
- Polycythemia chronic hypoxemia erythropoietin synthesis
- Pulmonary hypertension Cor-pulmonale or right ventricular failure

Management

- Hypoxemia may cause death in RF
- Primary objective is to reverse and prevent hypoxemia
- Secondary objective is to control PaCO₂ and respiratory acidosis
- Treatment of underlying disease
- Patient's CNS and CVS must be monitored and treated

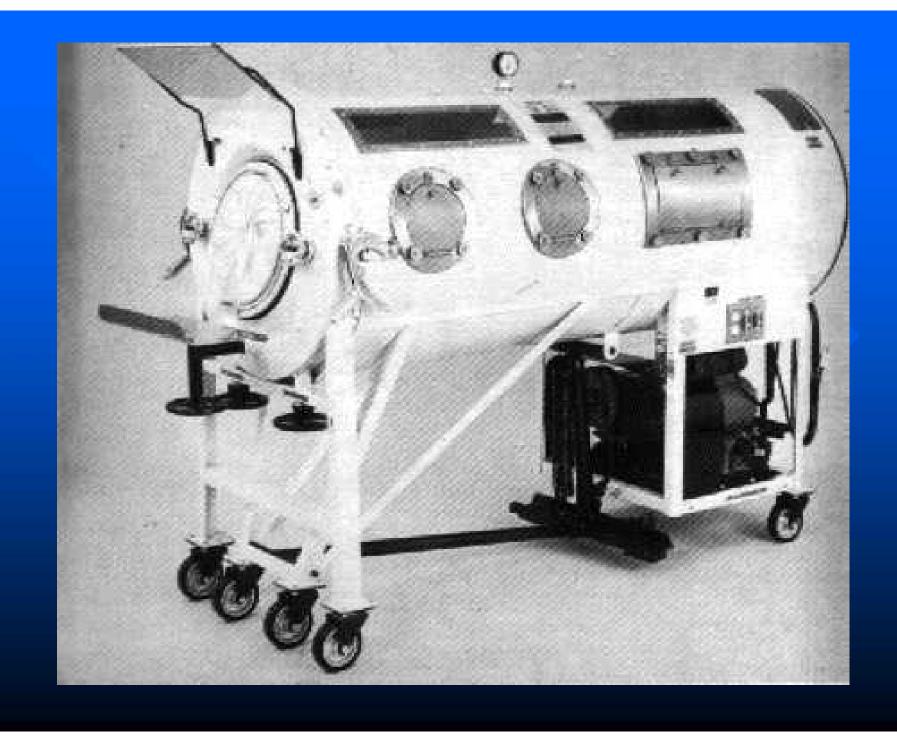

1. Oxygen Therapy

Supplemental O₂ therapy essential \blacksquare titration based on SaO₂, PaO₂ levels and PaCO₂ Goal is to prevent tissue hypoxia Tissue hypoxia occurs (normal Hb & C.O.) - venous $PaO_2 < 20 \text{ mmHg or } SaO_2 < 40\%$ - arterial $PaO_2 < 38 \text{ mmHg or } SaO_2 < 70\%$ Increase arterial $PaO_2 > 60 \text{ mmHg}(SaO_2 > 90\%)$ or venous $SaO_2 > 60\%$ \Box O₂ dose either flow rate (L/min) or FiO₂ (%)

Risks of Oxygen Therapy

O₂ toxicity:

- very high levels(>1000 mmHg) CNS toxicity and seizures
- lower levels ($FiO_2 > 60\%$) and longer exposure: capillary damage, leak and pulmonary fibrosis
- PaO₂>150 can cause retrolental fibroplasia
- FiO₂ 35 to 40% can be safely tolerated indefinitely
- **CO₂ narcosis:**
 - PaCO₂ may increase severely to cause respiratory acidosis, somnolence and coma
 - PaCO₂ increase secondary to combination of
 a) abolition of hypoxic drive to breathe
 b) increase in dead space



2. ARTIFITIAL VENTILATION

- Non invasive with a mask
- Invasive with an endobronchial tube
- MV can be volume or pressure cycled For hypercapnia:
 - MV increases alveolar ventilation and lowers PaCO₂, corrects pH
 - rests fatigues respiratory muscles

For hypoxemia:

- O₂ therapy alone does not correct hypoxemia caused by shunt
- Most common cause of shunt is fluid filled or collapsed alveoli (Pulmonary edema)

POSITIVE END EXPIRATORY PRESSURE (PEEP)

- PEEP increases the end expiratory lung volume (FRC)
- PEEP recruits collapsed alveoli and prevents recollapse
- **FRC** increases, therefore lung becomes more compliant
- Reversal of atelectasis diminishes intrapulmonary shunt
- Excessive PEEP has adverse effects
 - decreased cardiac output
 - barotrauma (pneumothorax, pneumomediastinum)
 - increased physiologic dead space
 - increased work of breathing

Sudden respiratory failure

 PULMONARY EDEMA
 ACUTE RESPIRATORY DISSTRESS SYNDROME

PULMONARY EDEMA

- Pulmonary edema is an increase in extravascular lung water
- Interstitial edema does not impair function
- Alveolar edema cause several gas exchange abnormalities
- Movement of fluid is governed by Starling's equation

 $QF = KF \left[(P_{IV} - P_{IS}) + \sigma \left(\pi_{IS} - \pi_{IV} \right) \right]$

QF = rate of fluid movement KF = membrane permeability $P_{IV} \& P_{IS}$ are intra vascular and interstitial hydrostatic pressures π_{IS} and π_{IV} are interstitial and intravascular oncotic pressures σ reflection coefficient

Lung edema is cleared by lymphatics

Adult Respiratory distress Syndrome (ARDS)

- Variety of unrelated massive insults injure gas exchanging surface of Lungs
- First described as clinical syndrome in 1967 by Ashbaugh & Petty

 Clinical terms synonymous with ARDS Acute respiratory failure Capillary leak syndrome Da Nang Lung Shock Lung Traumatic wet Lung Adult hyaline membrane disease

Risk Factors in ARDS

Sepsis Cardiopulmonary bypass Transfusion Severe pneumonia Burn Aspiration Fracture Intravascular coagulopathy Two or more of the above

3.8% 1.7% 5.0% 12.0% 2.3%35.6% 5.3% 12.5% 24.6%

PATHOPHYSIOLOGY AND PATHOGENESIS

- Diffuse damage to gas-exchanging surface either alveolar or capillary side of membrane
- Increased vascular permeability causes pulmonary edema
- Pathology: fluid and RBC in interstitial space, hyaline membranes
- Loss of surfactant: alveolar collapse

CRITERIA FOR DIAGNOSIS OF ARDS

Clinical history: Pulmonary or non pulmonary (shock, multi system trauma) Exclude: chronic pulmonary diseases left ventricular failure Typical in respiratory distress: tachypnea >20 breath/minute Labored breathing central cyanosis **CXR-** diffuse infiltrates $PaO_2 < 50 \text{ mmHg } FiO_2 > 0.6$ Compliance <50 ml/cm H₂O increased shunt and dead space

MANAGEMENT OF ARDS

Mechanical ventilation corrects hypoxemia/respiratory acidosis

Fluid management correction of anemia and hypovolemia

 Pharmacological intervention Dopamine to augment C.O. Diuretics Antibiotics Corticosteroids - no demonstrated benefit early disease, helpful 1 week later
 Mortality continues to be 50 to 60%