Hypertension

Lectures from Pathological Physiology

Study materials from Pathological Physiology, 2016 – 17, dentistry © Oliver Racz

Repetition of physiology, basic terms-1

• What is blood pressure (BP) ?

- Moving force of blood flow to overcome the hemodynamic (peripheral) resistance
- Force, exerted by blood on vessel wall in arterial circulation
- $P = F/S = N/m^2$ (Pascals, Pa)
- ∎ 1 mmHg = 0,133 kPa
- For the body the tissue perfusion is essential = oxygen supply

Repetition of physiology, basic terms- 2

Determinants of BP

- Heart function (pump) catch 22
- Circulating volume
- Elasticity and tension of vessel wall
- Which pressures and where ?
 - sBP, dBP, mean arterial pressure
 - Mean filling pressure

Repetition of physiology, basic terms - 3

Mean arterial BP

- = dBP + pulse pressure/3
- 150/90; Mean = 90 + (60/3) = 110
- = CO * TPR
- (total peripheral resistance = microcirculation!)
- · Peripheral resistance is the opposite of perfusion !
- Determinant of CO is the venous return!

• Mean filling pressure is cca 7 mmHg

Experiment: Arterial pressure after heart arrest

5

This is determining the filling of right ventricle = venous return

	on of blood in lation
Region	%
Heart	7
Pulmonary circulation	9
Arteries	13
Arterioles, capillaries	7
Venous part of circulation	64
	6

Microcirculation

$\begin{array}{l} \mbox{Resistance arterioles } \varnothing \ 0,5-0,15 \ \mbox{mm} \\ \mbox{4-5 branchings to terminal arterioles } \varnothing \ 10 \ \mbox{\mu m} \\ \mbox{Capillaries} \end{array}$

- Blood flow velocity in aorta (Ø 3 4 cm²) 0,2 0,3 m/s
- In capillaries 0,3 mm/s \approx 3000 4000 cm²
- Only one third of them is open $\approx 1000\ cm^2$
- The hemodynamic resistance is directly proportional to the length of vessel and indirectly proportional to the 4th square of vessel diameter
 - Increase of diameter by 1,2 resistance decreases to 50 %,
 - 1,8-fold increase decrease to 10 %
 - and conversely !!!

Overview of blood pressure regulators

- Baroreceptors
- Chemoreceptors
- Ischemic response of CNS

Immediate reaction - limited effectivity

Snímka 8

T1 Tündérke; 16. 10. 2005

Overview of blood pressure regulators

- Pressure relaxation of vessel wall
- Fluid shift (Frank Starling)
- Renin angiotensin aldosterone system (& its antagonists – natriuretic hormones)
- Antidiuretic hormone

Slower reaction, limited effectivity

Regulation of microcirculation

- Extremely complicated mechanisms
 - Metabolic hypoxia, ATP, pH, etc.
 - Para-, autocrine NO, CO (endothel)
 - Ion equilibrium (contractility of muscle cells)
 - Transport systems, channels, their regulators & receptors
- Tissue ("bed")specific!

Regulation of "individual demand" Signals for higher systems

Overview of blood pressure regulators LONG TERM, ALMOST UNLIMITED EFFECTIVITY

kidney - regulation of volume

 Proofs – kidney crosstransplantations between HT & NT rats, human kidney transplantations

12

10

Pressure diuresis

- Kidney blood flow does not depend on BP
- Diuresis & natriuresis depend
- Pressure increase by 10 20 mmHg twofold increase of diuresis
- Rapid response begins in 1 minute
- Mechanism reabsorbtion of sodium

19

21

Regulated by macula densa

Definition & diagnostics of hypertension

- Scipione Riva-Rocci: Un nuovo sfigmomanometro. Gazetta Med Torino, 47, 981 – 1001, 1896
- Long term increase of systolic blood pressure ≥ 140 mmHg & diastolic blood pressure ≥ 90 mmHg (confirmed by repeated measurements), or the use of antihypertensive therapy
- Classic sphygmomanometers, digital & 24 hour monitoring of BP, continuous monitoring
- Lege artis (white coat HT)
- Measure in everybody (The Chernobyl Effect)

Classification of hypertension

- According to values of BP, see \Rightarrow
- According to its etiology (pathogenesis)
 - primary (95 %?)
 - secondary forms of hypertension (5%?)
- According to the stage of disease
 - 1. Only hypertension
 - 2. Manifest damage of organs heart hypertrophy, nephropathy & changes of ocular fundus = remodelation of small vessels
 - 3. Heart and kidney failure, hemorrhagic stroke

CATEGORY	sBP	dBP
Normal	< 120	< 80
Prehypertension	120 - 139	80 - 89
Hypertension I	140 – 159	90 - 99
Hypertension II	≥ 160	≥ 100

- 24 hour monitoring
- Decrease after 8 p.m.
- 11 p.m. 05 a.m. by 20 % (20 30 mmHg)
- Increase in the morning, maximum before noon
- Regulator: kidneys or catecholamines ? (both)
- New term non-dippers, bad prognosis
- Surprise if the treatment is bad nocturnal hypotension

24

Epidemiology of hypertension

- 20 and more % of adult population
- Already in children (2 5%) very bad prognosis
- Treatment often not ideal
- Association with salt intake no hypertension in aboriginal people from New Guinea & Amazonia who do not use salt
- Deficiency of Ca, Mg
- Association with obesity

Primary hypertension

 The cause and the pathogenesis is not fully clear

- Our old and simple explanation
- Disturbance of pressure diuretic curve of kidneys
- Kitchen salt ?
- Dysfunction of endothel ?
- Hypertension as a "complex" disease
 - Arising as a consequence of external (salt, obesity) factors and genetic background

27

"Kidney" theory of primary hypertension

- Key role of kidneys in volume regulation the excretion of Na and water is strongly pressure dependent.
- Primary hypertension is caused by disturbance of this function ???
- Why and how ???

Secondary hypertension - 1

Renal

- Renoparenchymal (decrease of nephron number)
- Renovascular (stenosis of a. renalis RAAS)
- Endocrine
 - Phaeochromocytoma paroxysmal HT
 - Conn, Cushing, other diseases of adrenal cortexAcromegaly
- HT during gravidity, EPH gestosis (preeclampsia)

30

Secondary hypertension - 2

Cardiovascular

- Coarctation of aorta (upper part of body)
- Isolated systolic: loss of flexibility of vessel wall in advanced age

31

32

Isolated systolic in aortal regurgitation & AV shunts

Neurogenic

- High intracranial pressure transitory
- Lead intoxication

Iatrogenic

Secondary hypertension - ???

How to classify hypertension

- Associated with obesity ?
- Associated with insuline resistance ?
- Associated with Type 2 diabetes mellitus ?
- Associated with sleep apnoea syndrome ?

• How to classify stress hypertension ?

• A LOT OF PRIMARY HTs ARE NONDIAGNOSED CONNs ?

