MICROCIRCULATORY FAILURE SHOCK, MODS, DIC

MAREK BRENISIN, MD., PHD., DEPARTMENT OF PATHOLOGICAL PHYSIOLOGY 2024/2025

DISCLAIMER – FAIR USE

- This lecture presentation is for educational purposes only.
- Copyright Disclaimer under Section 107 of the Copyright Act of 1976: Allowance is made for "fair use" for purposes such as criticism, comment, news reporting, teaching, scholarship, education, and research.

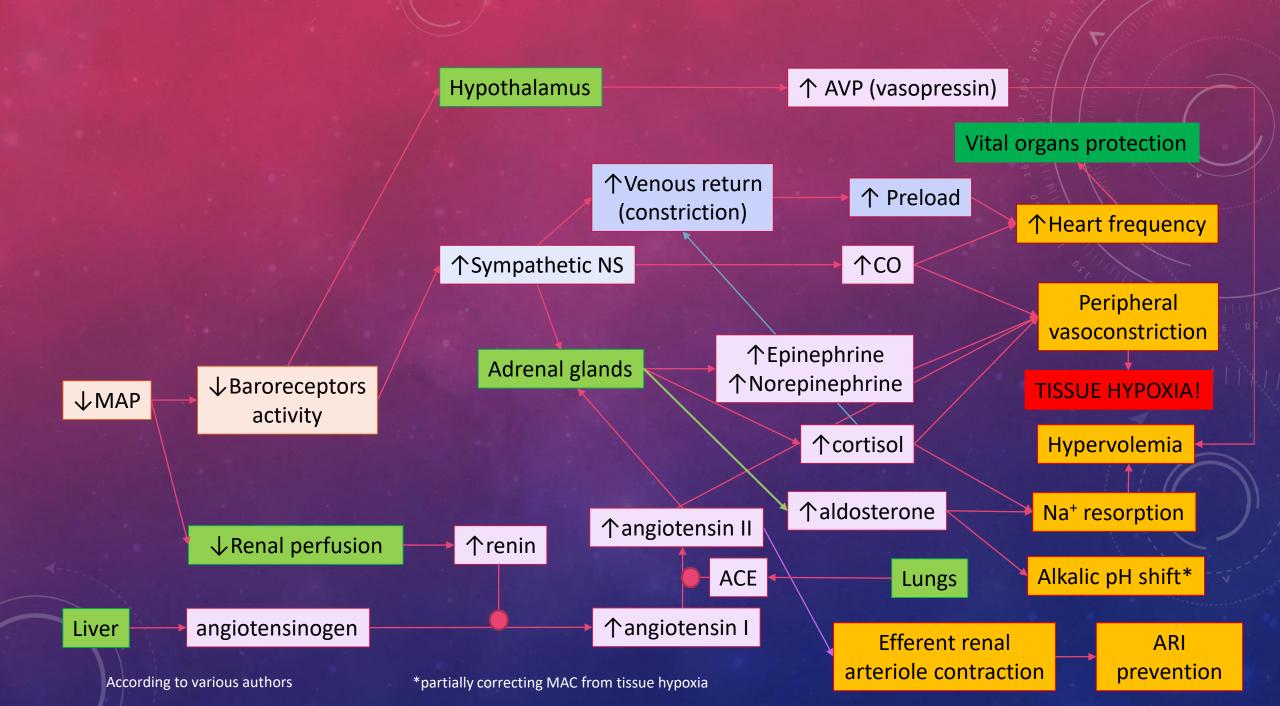
Fair use is a use permitted by copyright statute that might otherwise be infringing. All rights and credit go directly to its rightful owners. No copyright infringement is intended.

 Fair use is a doctrine in United States copyright law that allows for limited use of copyrighted material without requiring permission from the rights holders, such as commentary, criticism, news reporting, research, teaching or scholarship. It provides for the legal, non-licensed citation or incorporation of copyrighted material in another author's work under a four-factor balancing test.

GENERAL CHARACTERISTICS OF SHOCK

- A pathological condition
- Discrepancies in oxygen supply and demand
 - Tissue hypoxia
- Leads to global hypoperfusion
 - Lactic acidosis development (MAC, HAGMA)
- Untreated leads to
 - Irreversible collapse of circulation
 - Organ systems dysfunction (multiple organ dysfunction syndrome, MODS)

PHASE/STAGES OF SHOCK


- 1. Initial
- 2. Compensatory (Compensated)
- 3. Progressive/Decompensed (Uncompensated)
- 4. Refractory (Irreversible)

INITIAL PHASE

- Drop in arterial pressure leads to failure of microcirculation support
- Transient tissue ischemia
 - Anaerobic glucose metabolism
 - Krebs cycle stopped -> pyruvate accumulation -> turning to lactic acid
- Cellular acidosis
 - Later lactate excreted to blood as well

COMPENSATORY PHASE (COMPENSATED SHOCK)

- Hypoperfusion triggers baroreceptors response (carotid sinus)
 - Increased sympathetic activity -> CO secretion -> vasoconstriction
 - Decreased parasympathetic activity
- Blood redistribution to heart and brain
 - Attempts to restore perfusion to kidney, lungs...
- Increased venous return
 - Increasing preload mobilising reserves
- Adrenal secretion stimulation (by sympathetic NS)
 - norepinephrine and epinephrine
- Decreased renal perfusion -> renin secretion -> RAAS engaged

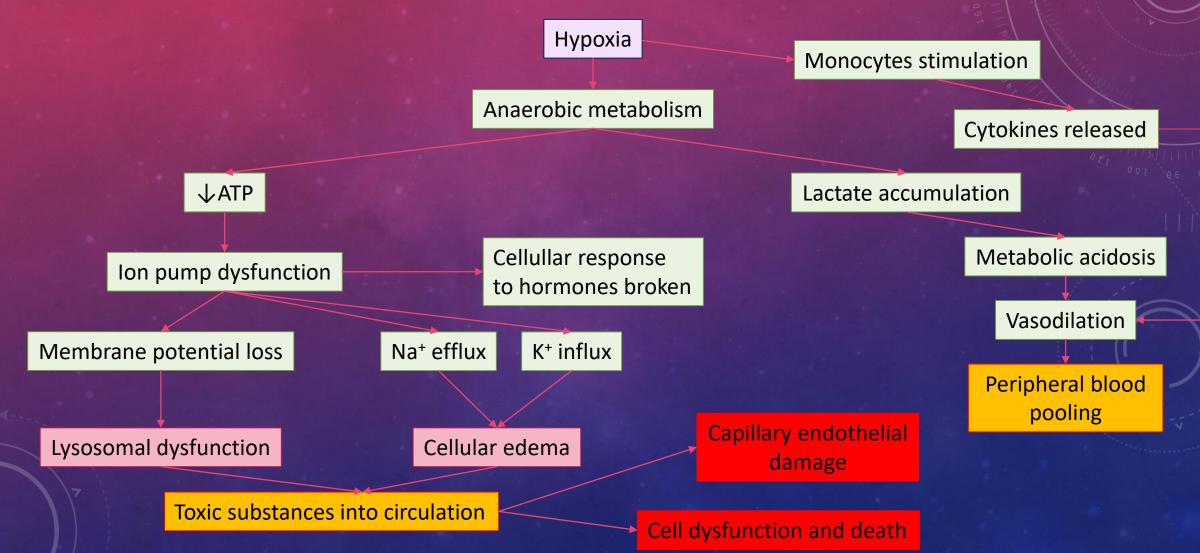
SYSTEMIC HYPOTENSION COMPENSATORY MECHANISMS

Target action	Mechanism
Maintaining adequate circulating volume	<i>Vasoconstriction</i> via 个 Sympathetic Tone, catecholamine release, angiotensin II release (RAAS) and vasopressin release
	Increased renal reabsorption via activation of RAAS and vasopressin release
	Increase in heart rate
Maximisation of cardiac output	Increase in contractility
	个Preload → 个CO (Frank-Starling relationship)
Redirection of blood flow to vital organs	Autoregulation of blood flow to vital organs
Optimising oxygen unloaded	个RBC 2-3-DPG concentration
settings	Bohr Effect (lactic acidosis)

Not to worry. We are still flying half a ship.

PROGRESSIVE/DECOMPENSATED (UNCOMPENSATED SHOCK)

- After prolonged hypoxia and anaerobic respiration
- Lactic acid accumulation
 - CVS reduced cardiac contractility, ventricular arrhythmias
 - Hyperkalemia, hyponatremia
 - Prerenal azotemia
 - Lactic acidosis

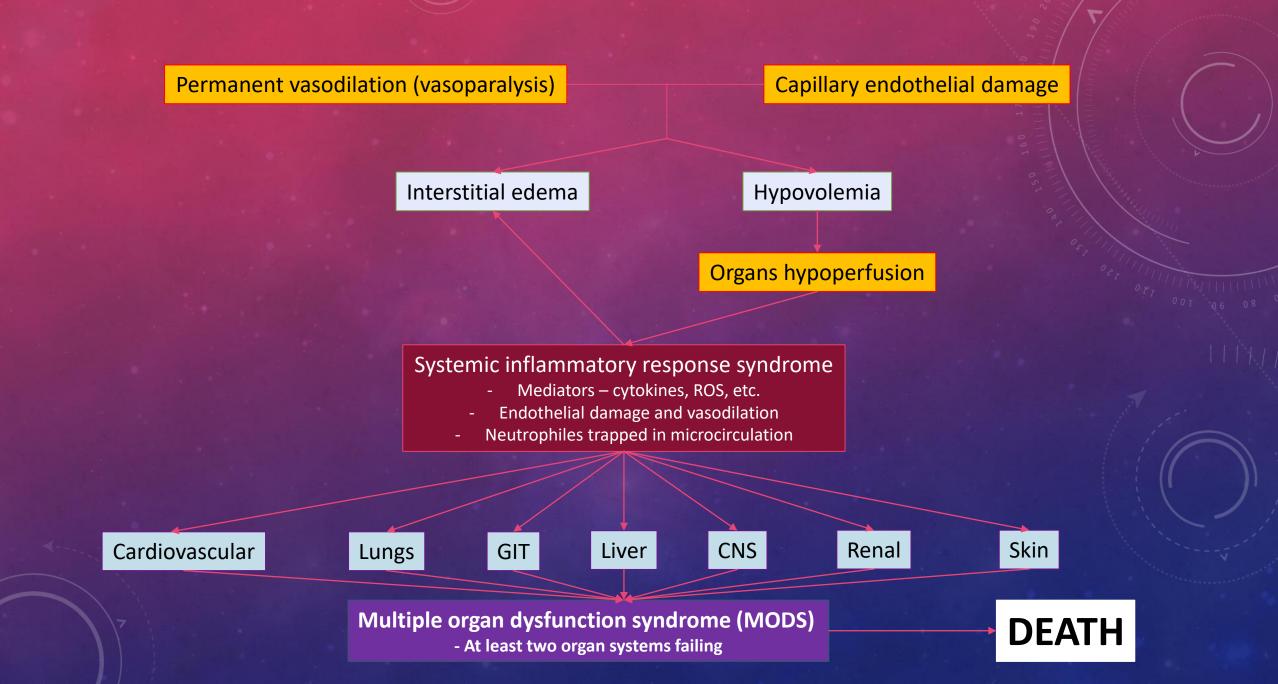

PROGRESSIVE/DECOMPENSATED (UNCOMPENSATED SHOCK)

- ATP shortage
 - Intracellular acidosis interferes with pH dependent enzymes e.g. 6-P-fructokinase
 - ATP-ion pumps malfunction (Na⁺/K⁺-ATPase)
 - loss of membrane potential
 - cellular edema
 - Lysosomal ion channels malfunction -> lysosomal membrane broken
 - Toxic substances from dead cells into extracellular fluid
- Capillary endothelial damage and death

cell dysfunction and rupture

https://www.intechopen.com/chapters/83503

CELLULAR RESPONSE TO HYPOXIA


BODY FUNCTIONS DETERIORATING

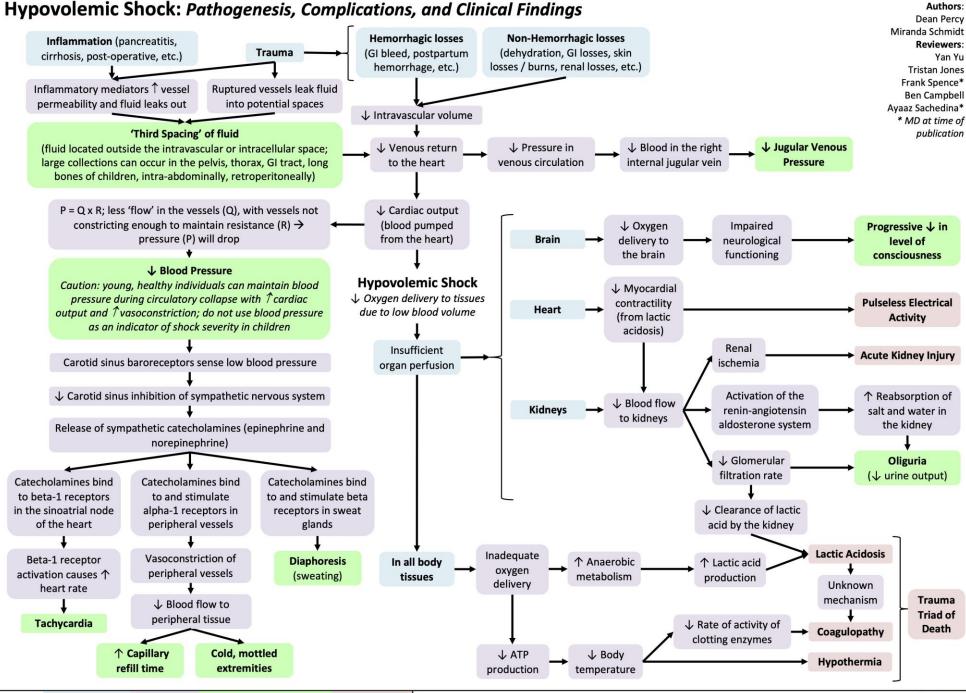
https://t4.ftcdn.net/jpg/03/76/32/09/360_F_376320970_rtGU5BhOJg0fOTJql8g5Kv1oRl4Ek38S.jpg

REFRACTORY (IRREVERSIBLE SHOCK)

- Cannot be reversed even via intense intervention
- Compensatory mechanisms lost
- Decreased organ perfusion
- Vasodilation + vascular permeability
 - Interstitial edema
 - Hypovolemia in circulation
- Refractory hypotension + organ ischemia
- Multiple organ dysfunction syndrome (MODS) developing

https://images.rawpixel.com/image_800/cHJpdmF0ZS9sci9pbWFnZXMvd2Vic2l0ZS8yMDIzLTA4L3Jhd3BpeGVsX29mZmljZV8xMF90aGVfcGljdHVyZV9vZl9zcGFjZXNoaXBfZXhwbG9kaW5 nX3N1cmVhbGlzdF8wYTQ4NTFiZS1iOGRjLTRjOTItYWM5Ni03MDM2NGM3NjVkMmJfMS5qcGc.jpg

CLASSIFICATION OF SHOCK

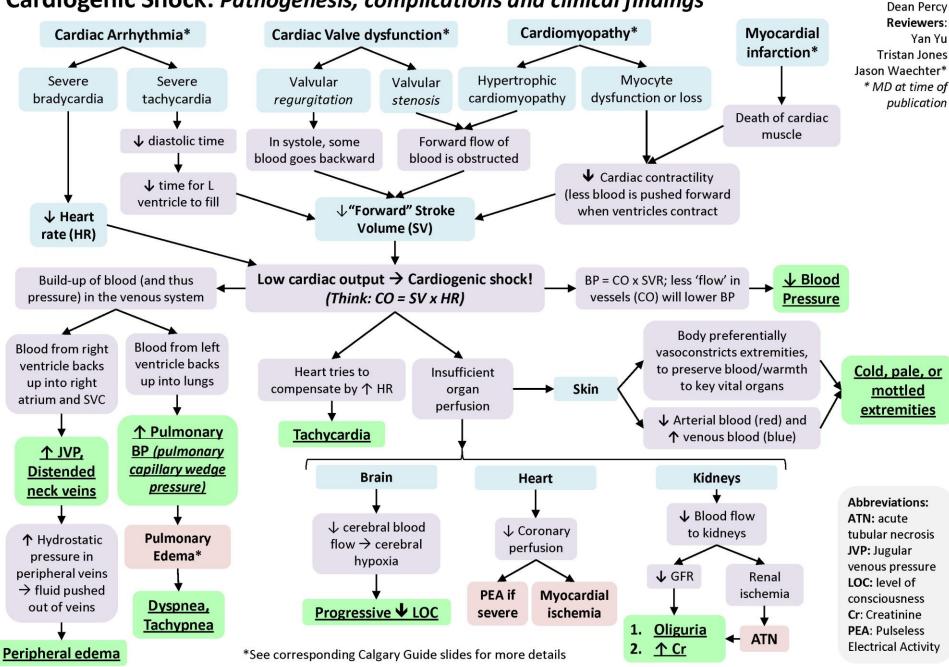

- Hypovolemic
- Cardiogenic
- Obstructive
- Distributive

HYPOVOLEMIC SHOCK

- Pathomechanism
 - Loss of blood volume due to bleeding, dehydration or leaking of fluids into extravascular space
- Causes
 - Absolute hypovolemia
 - Massive dehydration
 - Blood loss (hemorrhage)
 - Gastrointestinal vomiting, diarrhea, stoma or fistula
 - Kidney hyperglycemic states, diuretics treatment, salt-wasting nephropaties, diabetes insipidus
 - Skin burns, skin lesions (ulcerations), perspiration (hot climate)
 - Relative hypovolemia (third spacing)
 - Intestinal obstruction, pancreatitis, major venous system obstruction, endothelial damage, massive or systemic inflammatory response

HYPOVOLEMIC SHOCK CLASSES

Class	Volume loss		Pulse	Blood pressure	Capill	ary refill	Respiratory rate	y Urine output (mL/kg/h)
- I	0-15 %	Ν	Iormal	Normal	Nc	ormal	Normal	1 – 2
П	15 – 30 %	Mild tachycardia		Mildly Low		iildly onged	Mild Tachypnea	0.5 – 1
Ш	30 – 40 %	Тас	hycardia	Low	Prol	onged	Tachypnea	0.25 – 0.5
IV	>40 %	Bradyca	hycardia, ardia or even absent	Very low		eatly onged	Severe Tachypnea	<0.25 or non- existing
Shock Index (SI)		Group I No shock					Group IV Severe Shock	
$SI = \frac{1}{SY}$	heart rate stolic blood pre	essure	<0.6	0.6 – 1	0	1.() - 1.4	≥1.4


Legend: Pathophysiology Mechanism Sign/Symptom/Lab Finding Complications Published January 24, 2013, updated December 4, 2022 on www.thecalgaryguide.com

https://calgaryguide.ucalgary.ca/wpcontent/uploads/2015/04/Shock-Hypovolemic-2022.jpg

CARDIOGENIC SHOCK

- Pathomechanism
 - Heart fails to pump enough blood to peripheries due to impaired myocardial contractility
- Causes
 - Myocardial infarction
 - Malignant arrhythmia
 - Myocardial ischemia, right arrhythmogenic ventricular dysplasia
 - Myocarditis (mostly Coxsackie B virus infection)
 - Dilated cardiomyopathy (systolic dysfunction)
 - Valvular dysfunction
 - Aortic valve stenosis, mitral valve stenosis
 - Tachy- and bradarrhythmias (>180–200 bpm or <20 respectively)

Cardiogenic Shock: Pathogenesis, complications and clinical findings

https://img.grepmed.com/uploads/13232/cardi ology-shock-signs-symptoms-cardiogenicoriginal.jpeg

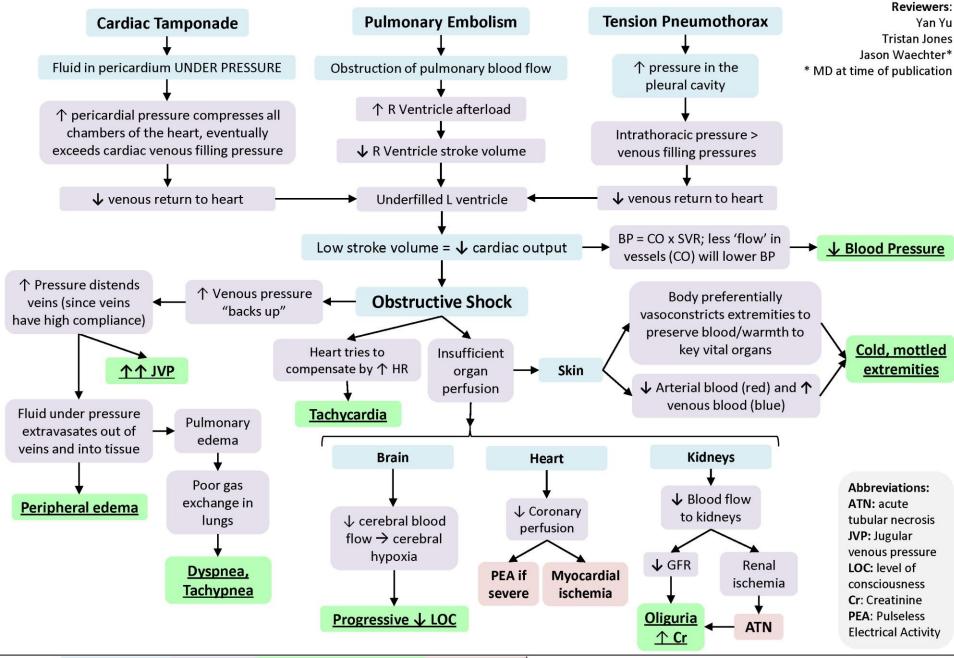
Abbreviations: tubular necrosis venous pressure consciousness **PEA:** Pulseless Electrical Activity

Author:

Legend: Pathophysiology Mechanism Sign/Symptom/Lab Finding Complications

Published July 7, 2013 on www.thecalgaryguide.com

The SCAI pyrar	mid of cariogenic shock classification ¹	Physical exam	Biochemical markers	Hemodynamics
E	Extremis A patient experiencing cardiac arrest with ongoing CPR and/or ECMO, being supported by multiple interventions.	Near pulselessness Cardiac collapse Mechanical ventilation Defibrillator used	CPR (A-modifier) pH ≤ 7.2 Lactate ≥ 5 mmol/L	No SBP without resuscitation PEA or refractory VT/VF Hypotension despite maximal support
	Deteriorating	May include any of: Look unwell, panicked	Stage C and deteriorating	Stage C and need for multiple pressors or TCS devices
C C	A patient who fails to respond to initial interventions. Similar to category C but getting worse.	ashen, mottled, dusky cold, clammy Volume overload	May include any of: Lactate ≥ 2 mmol/L	SBP < 90 or MAP < 60 mmHg and need for drugs/device to maintain BP
	Classic A patient manifests with hypoperfusion that requires intervention (inotrope, pressor or TCS) beyond volum resuscitation to restore perfusion.	Extensive rales Killip class 3 or 4 NIV or MV Altered mental status Urine output <30 mL/h	Creatinine doubling > 50% drop in GFR Elevated LFTs Elevated BNP	Cardiac index < 2.2 L/min/kg PCWP > 15 mmHg RAP/PCWP \ge 0.8 mmHg PAPi < 1.85 Cardiac power output \le 0.6 W
В	Beginning A patient who has clinical evidence of relative hypotension or tachycardia without hypoperfusion.	Elevated JVP Rales in lung fields No sign of peripheral hypoperfusion	Normal lactic acid Minimal renal function impairment Elevated BNP	SBP < 90 or MAP < 60 mmHg Pulse > 100 bpm Cardiac index ≥ 2.2 L/min/kg PA sat ≥65%
A	At risk A patient who is not currently experiencing signs or symptoms of CS, but is at risk of developing CS.	Normal JVP Normal physical exam	Normal lactic acid Normal renal function	Normal BP Cardiac index ≥ 2.5 L/min/kg CVP < 10 mmHg PA sat ≥ 65%


https://img.grepmed.com/uploads/11971/abcdes-diagnosis-cardiogenic-shock-classification-original.jpeg

OBSTRUCTIVE SHOCK

- Pathomechanism
 - A barrier or an obstacle in circulation prevents proper heart filling
 - Decreased preload, high central venous pressure
- Causes
 - Cardiac tamponade
 - Tension pneumothorax
 - Pulmonary embolism
 - Abdominal compartment syndrome
 - Intraabdominal pressure >20 mmHg
 - Cause sepsis, abdominal trauma
 - Aortic stenosis*

*depending on the classification, but due to normal preload is mostly put into cardiogenic shock causes

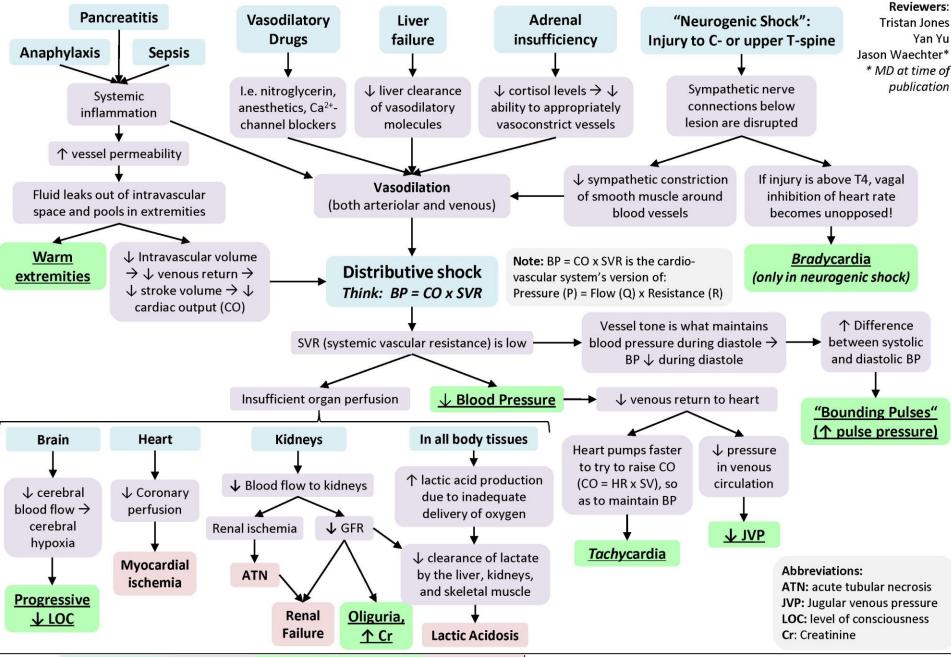
Obstructive Shock: Pathogenesis, complications and clinical findings

Legend: Pathophysiology Mechanism Sign/Symptom/Lab Finding Complications Published July 7, 2013 on www.thecalgaryguide.com

@090

Author:

Dean Percy


https://calgaryguide.ucalgary.ca/wpcontent/uploads/2015/05/Obstructive-Shock.jpg

DISTRIBUTIVE SHOCK

Pathomechanism

- Inappropriate distribution of blood volume to capillaries
- Sympathetic nervous system unable to maintain vascular tone
- Causes
 - Sepsis
 - Anaphylactic
 - Neurogenic

Distributive Shock: *Pathogenesis, complications and clinical findings*

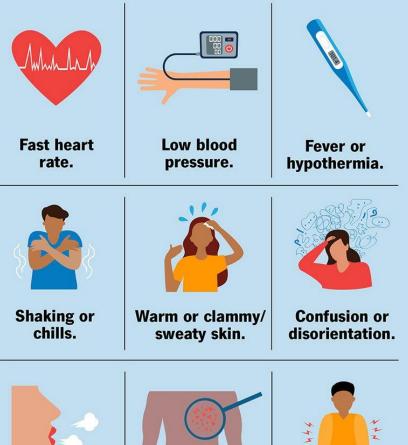
https://calgaryguide.ucalgary.ca/wpcontent/uploads/2015/05/Distributive-Shock.jpg

Legend: Pathophysiology Mechanism Sign/Symptom/Lab Finding Complications Published July 7, 2013 on www.thecalgaryguide.com

Author:

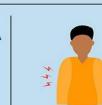
Dean Percy

DISTRIBUTIVE SHOCK - SEPSIS


• Features

- Septic-induced hypotension (SBP <90 mmHg or Δ40 mmHg from baseline), lactic acidosis, oliguria and/or alteration in mental status
- Overproduction of inflammatory cytokines
- Endotoxins from Gram- bacteria (K. pneumoniae, E. coli, Proteus spp.)
- SIRS present (definition criteria in the table below)

Finding	Value			
Temperature	<36 °C (96.8 °F) or >38 °C (100.4 °F)			
Heart rate	>90 bpm			
Respiratory rate	>20/min or p _a CO ₂ <4.3 kPa (32 mmHg)			
WBC (Leukocytes)	<4000/mm ³ or >12000 mm ³ or ≥10 % bands			


Sepsis

Symptoms of sepsis include:

Shortness of breath.

Extreme pain or discomfort.

SYMPTOMS IN CHILDREN

A child may have sepsis if he or she:

- Is breathing very fast
- Has a 'fit' or convulsion
- Looks mottled, bluish, or pale
- Has a rash that does not fade when you press it
- Is very lethargic or difficult to wake
- Feels abnormally cold to touch

SYMPTOMS IN ADULTS

WHAT ARE THE SYMPTOMS?

An adult may have sepsis if they show any of these signs: Slurred speech or confusion Extreme shivering or muscle pain Passing no urine (in a day) Severe breathlessness t feels like you're going to die Skin mottled or discoloured

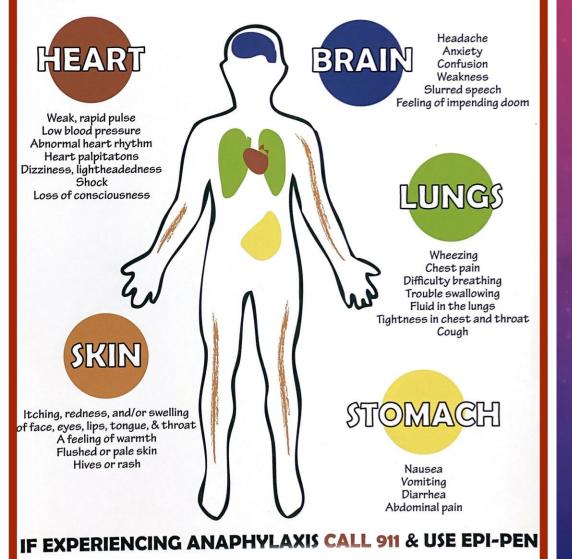
https://my.clevelandclinic.org/-/scassets/images/org/health/articles/12361-sepsis https://sepsistrust.org/wp-content/uploads/2022/03/FM8EEKDWQAA4e4N.jpg

Cleveland Clinic

DISTRIBUTIVE SHOCK - ANAPHYLAXIS

• Features

- Type I hypersensitivity reaction occurs
 - IgE mediated, evidences also for IgG (IgG1 and IgG3)
 - Pre-sensitised mast cells degranulation
 - Mainly histamine
 - Possible role of complement parts C3a, C4a, C5a

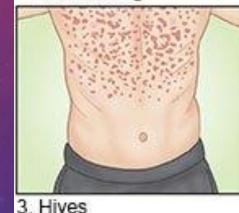

DISTRIBUTIVE SHOCK – ANAPHYLAXIS PATHWAYS

	IgE-dependent	IgG-dependent	
lg involved	IgE	lgGs (lgG1, lgG3)	
Antigen concentration	Low	High	
Fc receptor	FceRI	FcγRI, FcγRIIA, FcγRIIB, FcγRIIC, FcγRIIIA, FcγRIIIB	
Effector cells	Mast cells	Macrophages, monocytes, neutrophils	
Mediators	Histamine (leukotrienes, prostaglandins, serotonin, etc.)	Platelet-activating factors (leukotrienes, prostaglandins, serotonin , etc.)	
Triggering factors	Pollen particles, food, drugs (e.g. beta- lactam atb), insect sting and bites, exercise (food dependent)	Food, drugs (monoclonal antibodies – omalizumab or infliximab), dextrans, etc.	

Serotonin and macrophages (bold) are hypothesised as novel players in anaphylaxis pathogenesis https://www.frontiersin.org/files/Articles/262272/fimmu-08-00515-HTML/image_m/fimmu-08-00515-t001.jpg

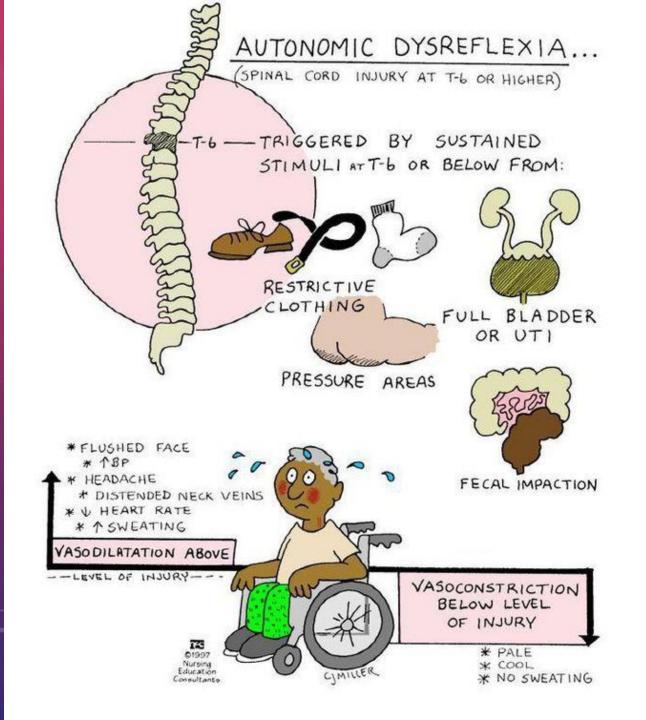
SYMPTOMS OF ANAPHYLAXIS

SYMPTOMS CAN OCCUR WELL AFTER INITIAL EXPOSURE


Signs and Symptoms of Anaphylaxis

 Trouble breathing or wheezing

2. Facial swelling


https://illinoissupply.com/images/sku/1696872624EN9363-Anaphylaxis-Symptoms-Poster.jpg https://www.drugs.com/cg/images/en3282929.jpg

DISTRIBUTIVE SHOCK - NEUROGENIC

• Features

- Brain or spinal cord trauma above T6 level
- Sympathetic innervation disrupted
 - Drop in peripheral vascular resistence
 - Sudden blood pressure drop
- Different from spinal shock (see next slide!)

	Neurogenic shock	Spinal shock
Definition	Sudden loss of sympathetic signals	Immediate temporary total loss of power, sensation and reflexes below the level of injury
Location of lesion	Above T6	Anywhere
Mechanism	Autonomic innervation disruption	Peripheral neurons temporarily unresponsive
Blood pressure	Hypotension	Normal or hypotension
Circulation collapse	Imminent	Possible
Pulse	Bradycardia	Bradycardia
Bulbocavernous reflexes	Variable	Absent
Motorics	Variable	Flaccid paralysis (later spastic)
Time after injury	48 – 72 hours	48 – 72 hours
Resolution	Short	Long
Temporary/Self-limiting	No	Yes

https://cdn.medizzy.com/Brfk7XRhOPH4f6QKw3ZPmSlxHrl=/680x755/https%3A%2F%2 Fs-media-cacheak0.pinimg.com%2F736x%2F3b%2F3f%2Fc9%2F3b3fc937c2a7cb3b73729438185cf2d5.j pg

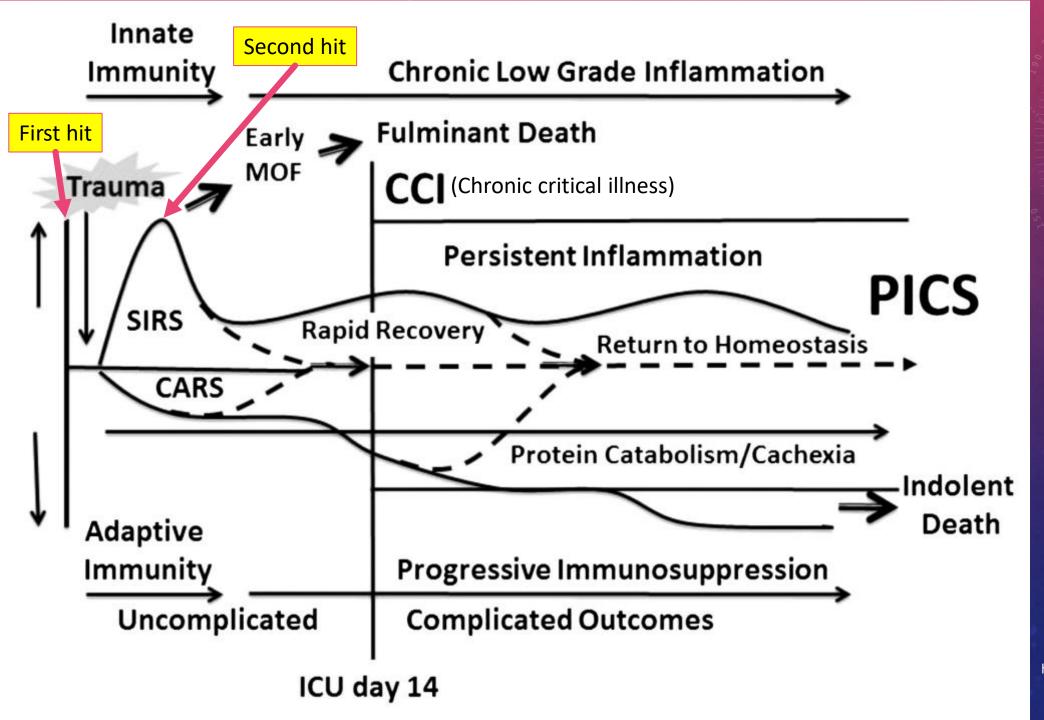
An Approach to Shock

	Hypovolemic	Distributive	Cardiogenic	Obstructive
JVP	Low	Low	High	High
Temperature of extremities	Cold	Usually warm	Cold	Cold
Effect of passive leg raise on pulse pressure	Increased	Increased	No effect	No effect
IVC on ultrasound	Non-dilated Collapsing with respiration	Non-dilated Collapsing with respiration	Dilated Non-collapsing with respiration	Dilated Non-collapsing with respiration
LV function on ultrasound	Hyperdynamic	Usually hyperdynamic	Decreased	Usually normal
Other findings	History of bleeding or dehydration Low Hemoglobin → Hemorrhagic (can be misleadingly normal early) High hemoglobin → Non-hemorrhagic (hemoconcentration)	Infectious symptoms → Sepsis Fever, high or low WBC, new focal opacities on CXR → Sepsis New medication or food → Anaphylaxis	History of cardiac disease and/or CV risk factors S3 on exam Elevated BNP, troponin Signs of ischemia on ECG (Blood pressure is occasionally normal In cardiogenic shock)	History of malignancy or DVT risk factors DVT on exam → Massive PE Soft heart sounds, pulsus paradoxus, pericardial effusion on ultrasound or CXR → Tamponade Unilateral absence of breath sounds, pneumothorax on CXR → Tension pneumothorax
	\downarrow	¥	\downarrow	\downarrow
Next steps:	General mechanism usually obvious GI bleed → EGD and/or colonoscopy	If septic shock suspected → Blood, urine, +/- sputum cultures Consider Abdominal CT	Formal echocardiogram Serial troponins and ECGs	If PE suspected \rightarrow CTA thorax If tamponade suspected \rightarrow Echo
	If hemorrhagic, but not GI/trauma → Consider CT abdomen		If acute MI likely → Cardiac cath	Eric Strong / Strong Medicine; Copyright 2019 Creative Commons 4.0 BY-NC-ND

MULTIPLE ORGAN DYSFUNCTION SYNDROME (MODS)

• Definition

- When at least two organ systems are malfunctioning
- CRITICAL CONDITION!
- Characteristics
 - Increases duration of hospitalisation and mortality
 - Average length of MODS patients hospitalisation was three times longer than without MODS
 - Incidence in critically ill trauma patients 22 88 %
 - One of factors leading to multiorgan failure (MOF)
 - Mechanism still unclear, hypotheses exist


MECHANISM OF MODS DEVELOPMENT

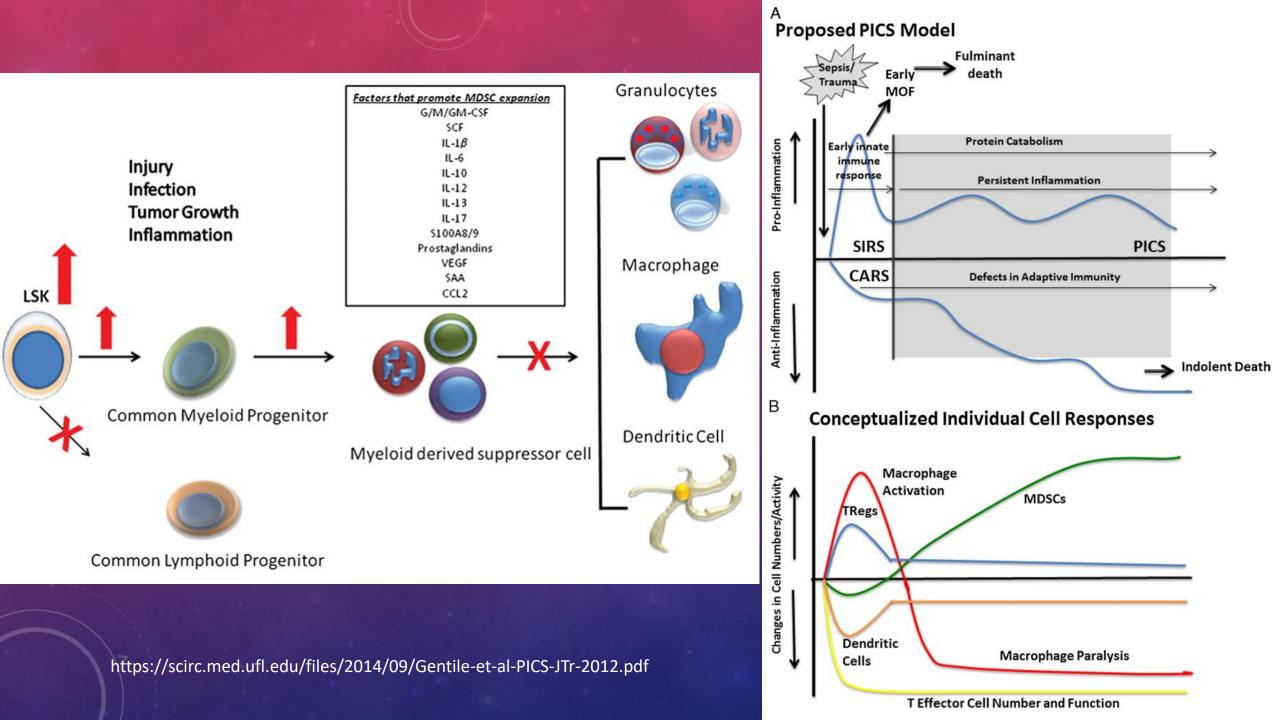
• "Two-hit" theory process

- First hit excessive proinflammatory response (sepsis, injury, burns, hypoperfusion)
- Second hit bacterial infection/invasion, surgical intervention, etc.
- \downarrow perfusion -> \uparrow ROS, RNS -> oxidative stress -> mitochondrial damage
- Multifactorial process
- Deregulated immune response + mitochondrial damage -> background for MODS
 - Early phase -> \uparrow TNF- α , IL-1 β , VCAM-1, endothelial leukocyte adhesion molecule-1
 - Late phase -> upregulation of immune response in affected organs
 - MAPK, Rho-activated kinase, TGF-β -> fibrosis -> cumulative damage

MECHANISM OF MODS DEVELOPMENT

- Balance between SIRS and CARS
 - SIRS systemic inflammatory response syndrome
 - Proinflammatory cytokines, local inflammation to systemic
 - CARS compensatory anti-inflammatory response syndrome
 - Anti-inflammatory cytokines and immunosuppresion
 - MARS mixed antagonist response syndrome (dys)balance of SIRS and CARS
- Pulmonary dysfunction -> cardiac, renal, hepatic dysfunction
- Sepsis may contribute, but SIRS is main factor for MODS development
 - Sepsis causes cca 66 % MODS cases

(Persistent inflammation, immunosuppresion and catabolism syndrome)


https://scirc.med.ufl.edu/files/2014/0 9/Vanzant-et-al-PICS-blunt-trauma-JTrACS-2014.pdf

CELLULAR ACTIVITY DURING MODS

- Early changes in 0 24 hours
 - Inflammatory stimuli
 - Neutrophils proliferation -> PMN (polymorphonuclears) priming
 - NK cell production
 - ↓γδ-T cells
 - MODS and lymphopenia
 - Persistent lymphopenia increases mortality

CELLULAR ACTIVITY DURING MODS

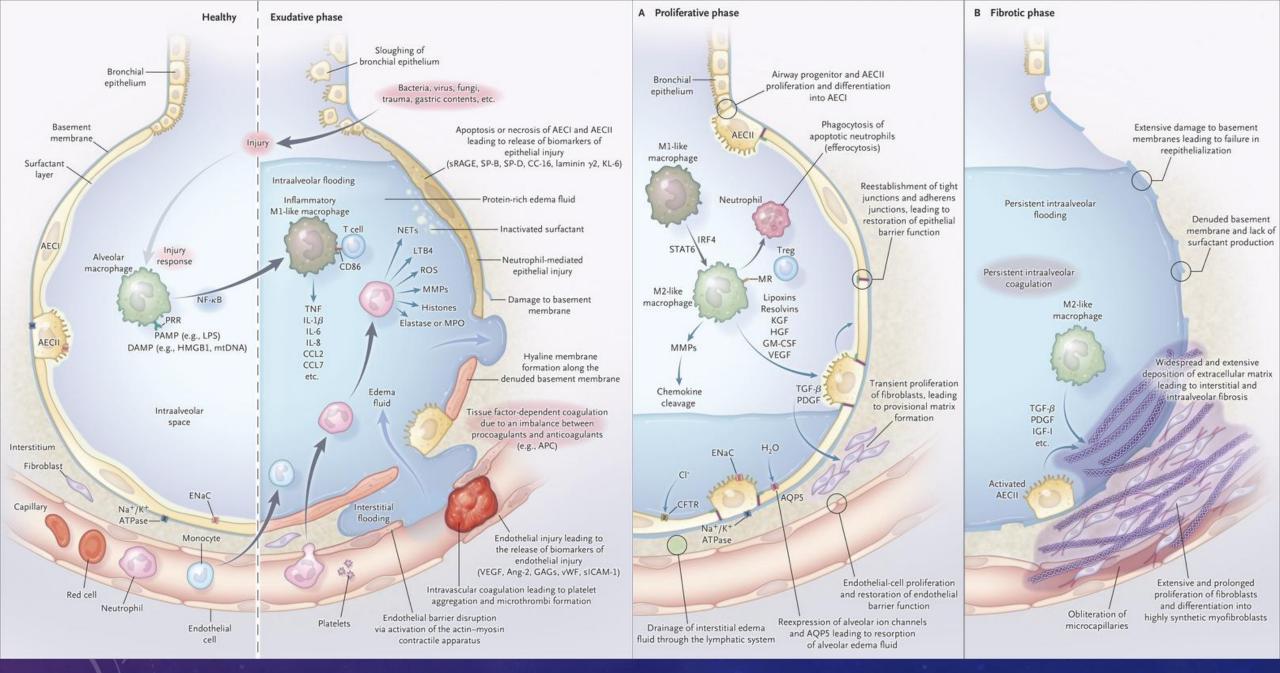
- Emergency myelopoiesis
 - Under influence of G/GM-CSF, IL-6, IL-17, etc.
 - Emptying of bone marrow and lymphocytes apoptosis in secondary lymphoid organs
 - Myelopoietic precursors production favoured -> granulocytes, macrophages, dendritic cells
 - MDSC (myeloid-derived suppressor cells)
 - Role T-cell suppresion
 - Mechanism iNOS, arginase, ROS
 - Inflammatory response enhanced

CARDIOVASCULAR SYSTEM IN MODS

- Frequent among critical patients
- Causes
 - Septic shock, sepsis, SIRS
- Pathomechanism (see next slide)
 - Primary ischemia-reperfusion injury
 - Inflammatory response
 - Adrenergic response
 - Treatment of CVS

Determinant	Description	Damage mechanism			
Myocardial ischemia- reperfusion injury	O ₂ not meeting demands of cardiac muscle Myocardial infarction Circulatory arrest Hypovolemic shock 	 Ischemia ATP depletion Lactic acidosis Intracellular Ca²⁺ overload Apoptosis stimulation Impaired diastolic relaxation Prone to arrhythmias Reperfusion ROS production Aggravation of cardiac injury 			
SIRS	Oxidative stress Deregulated immunity	 TNF-α, IL-1β and IL-6 Myocardial depression NF-κB Inflammatory response upregulation in myocardium ROS Mitochondrial damages and more ROS produced 			
Catecholamine induced cardiac dysfunction	个plasma catecholamines Autonomic dysfunction Increased sympathetic activity	 Intracellular Ca²⁺ overload ATP depletion Mitochondrial damage ROS produced 			
	Norepinephrine (vasopressor)	Cumulative damage with endogenous catecholaminergic reponse			
	Propofol (and sedatives)	 Cardiac depression, vasodilation and hypotension More vasopressors required to stabilise 			
CVS treatment	Mechanical ventilation	 Positive end exspiration pressure and positive pressure ventilation reduce venous return and cardiac output Paradoxal decline in CO₂ instead of induced O₂ increase Less oxygen delivery available 			
	Dobutamine	 ↑ cardiac output and contractility May result into cardiac ischemia (increased O₂ demands) 			

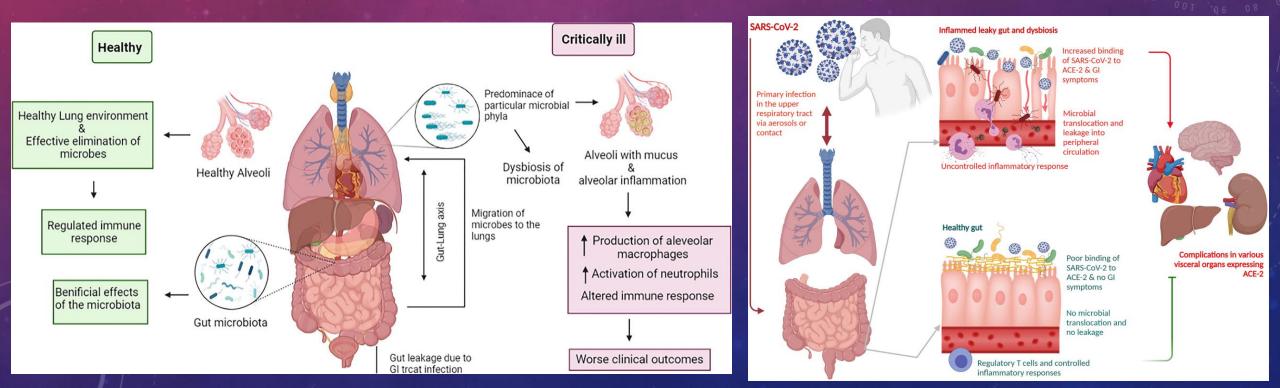
CARDIOVASCULAR SYSTEM IN MODS


- Features
 - 1. Altered contractility
 - 2. Decreased ejection fraction
 - 3. Diastolic dysfunction
 - 4. Systolic dysfunction
 - 5. Ventricular dilation
 - Presence of both 4. and 5 is detected in 50 % septic shock patients and may increase mortality up to 70 %
 - Both 4. and 5. may occur even in normal or high cardiac output

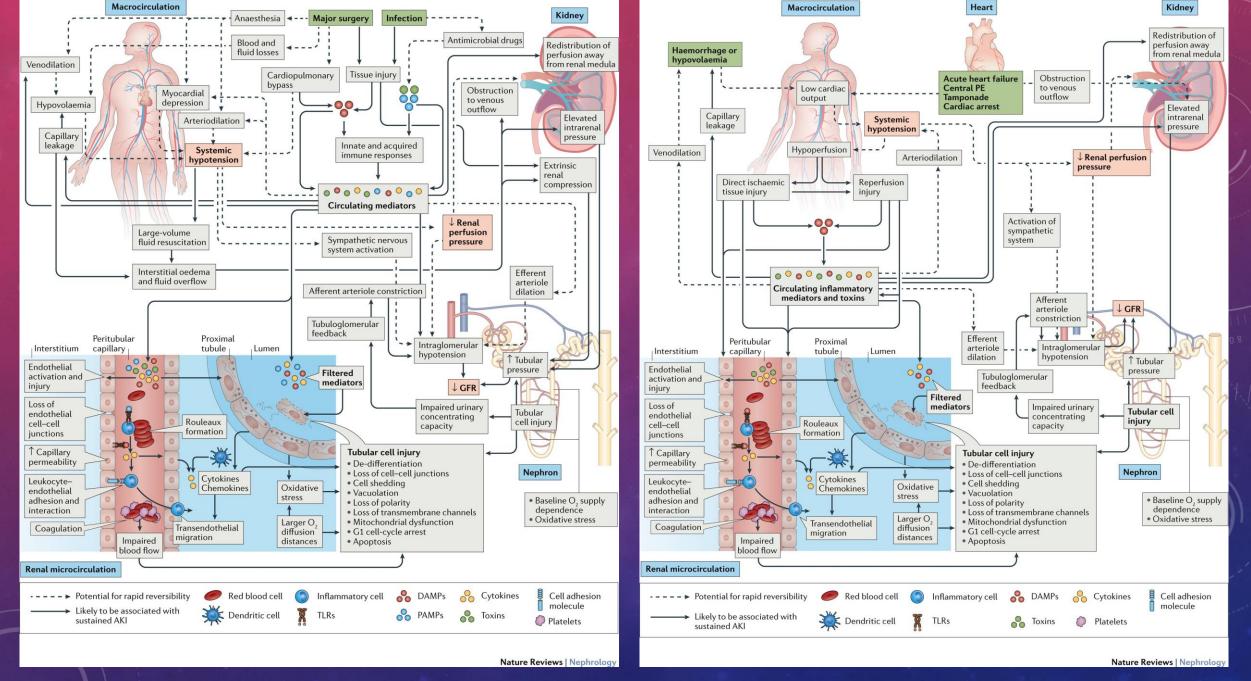
LUNGS IN MODS

- Acute respiratory distress syndrome (ARDS) The first malfunction in MODS usually
 - Acute inflammatory response with diffuse infiltrates
 - Characteristics
 - Lung edema
 - Poor oxygenation
 - Pulmonary hypertension and acute cor pulmonale (25 % patients)
 - Associated with apoptosis of cells in distant organs and their dysfunction
 - Kidney, colonic villi

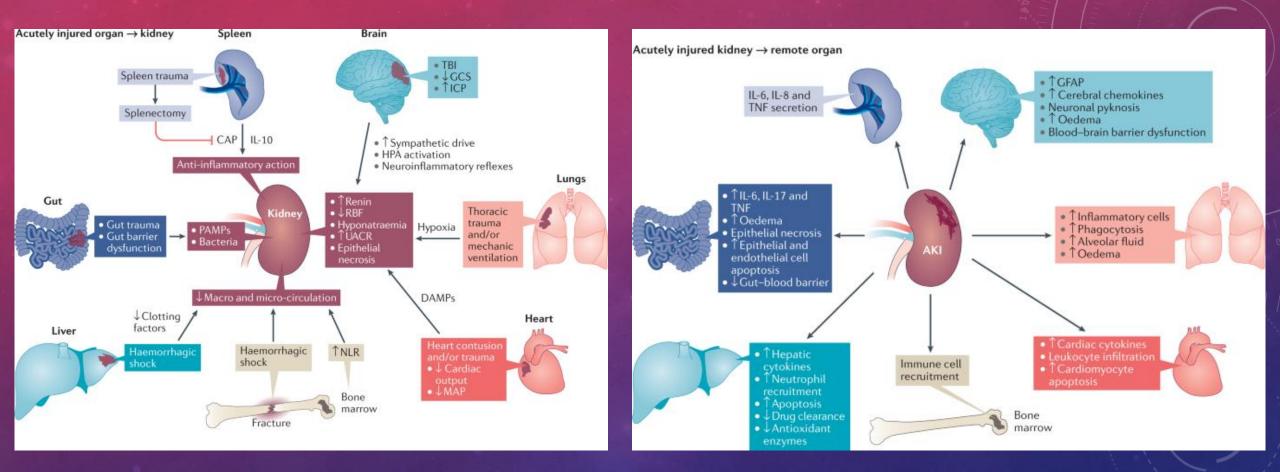
LUNGS IN MODS


- "Two-hit" theory
 - First hit pneumonia, acid aspiration, contusion, etc.
 - Second hit mechanical ventilation -> more intense inflammatory response
- Cca 10 % patients are dying from mechanical ventilation injury
 - SIRS usually starts with intubation even hours before ICU admission
 - Mechanical ventilation may solely deregulate immune response and start SIRS!
 - Proper ventilation regime needs to be set

https://www.nejm.org/na101/home/literatum/publisher/mms/journals/content/nejm/2017/nejm_2017.377.issue-6/nejmra1608077/20180122/images/img_medium/nejmra1608077_f2.jpeg https://www.nejm.org/na101/home/literatum/publisher/mms/journals/content/nejm/2017/nejm_2017.377.issue-6/nejmra1608077/20180122/images/img_medium/nejmra1608077_f3.jpeg https://link.springer.com/chapter/10.1007/978-981-16-8957-4_8/figures/1 https://www.frontiersin.org/files/Articles/590874/fcimb-11-590874-HTML-r1/image_m/fcimb-11-590874-g001.jpg


ARDS AND DISTANT ORGANS DAMAGE

- Deregulated inflammation in ARDS -> cytokines into circulation -> bacteria and toxins from GIT to circulation -> worsening of outcome and distant organs damage
- Note Lung-gut axis can work in both ways, but ARDS is usually the primary change in MODS



RENAL DYSFUNCTION IN MODS

- Occurs in 30 40 % critically ill patients (up to 60 % with mechanical ventilation)
- Acute kidney injury in MODS (see next slide)
 - Decreased filtration -> fluid dysbalance
 - Metabolic acidosis -> pulmonary vasoconstriction, systemic vasodilation
 - Increase of erythropoietin in 48 hrs, then drop
 - Immune response deregulation
 - Decreased cleavage of cytokines
 - Tissue injury lead to production of DAMPs (damage-associated molecular patterns) -> TLRs engaged -> pro-inflammatory cytokines secreted -> IL-2, -6, -8, -12, -18, INF-γ, TNF, CCL2 (monocytes) and CCL5 (monocytes, T-cells)
 - Deregulation of neutrophils, monocytes, T-cells
 - Perivascular infiltrate and microthrombi formation -> may spread to systemic circulation

https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fnrneph.2017.184/MediaObjects/41581_2018_Article_BFnrneph2017184_Fig1_HTML.jpg?as=webp https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fnrneph.2017.184/MediaObjects/41581_2018_Article_BFnrneph2017184_Fig2_HTML.jpg?as=webp

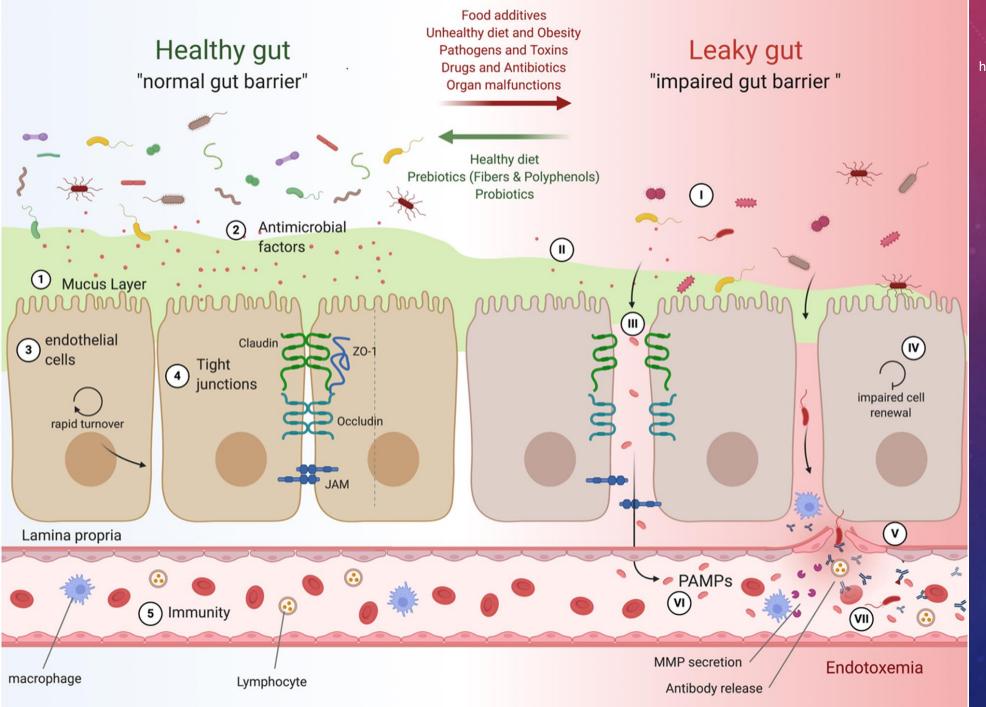
AKI and MODS

SIRS promotes renal damage ↔ AKI affects distant organs dysfunction

https://media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41581-020-00344-9/MediaObjects/41581_2020_344_Fig7_HTML.png

GASTROINTESTINAL SYSTEM IN MODS

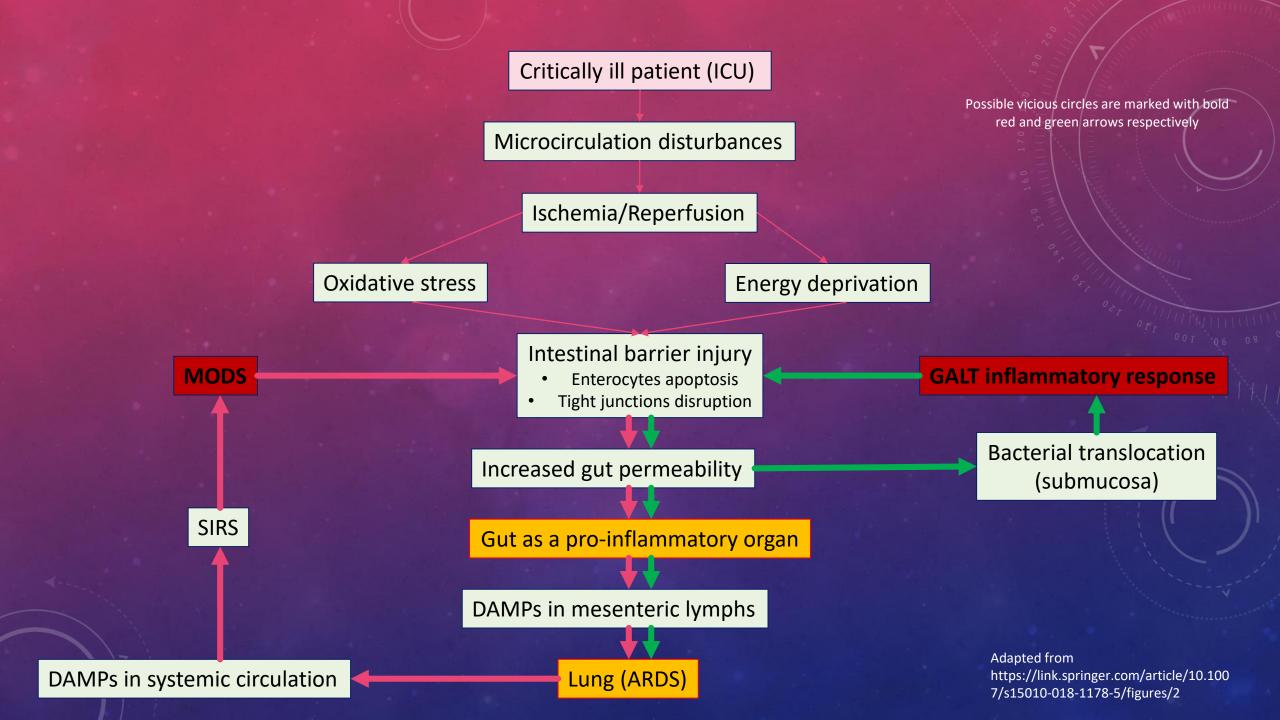
- Changes in GIT function may be a motor of changes during MODS
 - Decreased absorption of nutrients
 - Increased gut permeability for bacteria and toxins
 - Alteration of a gut microbiome
- "Gut-lymph" hypothesis to play the main role
 - Bacterial translocation may lead to deregulation of inflammatory response
 - Emergence of multiple-drug resistance bacteria in critically-ill patients
 - Result of both antibiotics and common treatment and/or surgery
 - Normalisation of gut microbiome decreased risk of MODS


GASTROINTESTINAL BARRIER FUNCTIONS (PHYSIOLOGY)

- 1. Biological bacteria provide
 - Metabolic
 - digestion assistance indigestible oligosaccharides cleaved
 - synthesis of short-chain fatty acids (acetate, propionate, butyrate) for intestinal epithelium energy supply
 - vitamin Bs and K synthesis
 - regulation of entero-hepatic bile acids cycle
 - Immunologic
 - PAMPs production and interaction with innate and adaptive immunity
 - Gut-protective functions
 - countering pathological bacteria (nutrients consumption and prevention of colonisation)

GASTROINTESTINAL BARRIER FUNCTIONS (PHYSIOLOGY)

- 2. Immune GALT (gut-associated lymphatic tissue)
 - T-cells
 - T_{regs} induced
 - Th to Th₁₇ differentiation
 - B-cells
 - IgA production in response to microbiome
 - Group 3 innate lymphoid cells
 - Dendritic cells and macrophages


- 3. Mechanical
 - Closed-lining intestinal epithelium
 - "kissing-points" tight junction to prevent ions, molecules and cells unregulated transport (near apical part of cells)
 - Subendothelial cells
 - Vascular endothelium

https://joe.bioscientifica.com/view/journals/jo e/248/2/images/JOE-20-0473fig1.jpeg

GUT-LYMPH HYPOTHESIS IN MODS

- "Three-hit (gut) theory" breakdown of GIT barrier
 - 1. Splanchnic hypoperfusion/ischemia
 - 2. Reperfusion injury
 - 3. Loss of gut function (leaky guts) -> luminal bacterial/endotoxin translocation
- Mesenteric lymph nodes as a crucial factors
 - Loss of maintenance of commensal bacteria -> pathological species prevail
 - PAMPs overload
 - DAMPs production (danger-associateed molecular patterns)
 - TLR4 and PRR (pattern-recognition receptors) stimulated -> deregulated immune response
 - Drained by cisterna chyli -> left subclavian vein -> lung circulation exposed as first -> possible acceleration of ARDS
 - Ligation of major mesenteric lymphatic duct in animal models improved survival

LOW CITRULLINE AS A MARKER OF INTESTINAL INSUFFICIENCY?

- Intestinal cells produce citrulline (concentration dependent on mass of cells
 - Intestinal transplantation succes possible predictor
 - Increase after surgery indicates better prognosis
- Citrulline levels correlate
 - Severity of disease negative and strong
 - Absorption positive and weak

- Decreased citrulline <20 mmol/L -> intestinal dysfunction
 - Short-bowel syndrome
 - Parenteral nutrition lead to more intense citrulline drop
 - Teduglutide (GLP-2 analogue, growth factor) lead to increase of citrulline
 - Possible negative marker of inflammation
 - Necrotising enterocollitis
 - Coeliac disease (intestinall vill atrophy)
 - Critical illness and sepsis
 - Also possible due to inflammatory reaction affection (possible synergy)

LIVER DYSFUNCTION IN MODS

- Three main pathomechanisms
 - 1. Hypoxic liver injury
 - 2. Cholestatic dysfunction
 - 3. Sclerosing cholangitis in critically ill
- Protective liver mechanisms
 - Hepatic arterial buffer response
 - Blood supply of liver Portal vein (75 80 %) vs. hepatic artery (20 25 %)
 - \downarrow portal vein blood flow
 - hepatic artery dilation (and vice versa)
 - Increased oxygen extraction (up to 90 %)
 - Able to compensate 25 60 % of portal vein blood flow loss

HYPOXIA LIVER INJURY (HLI)

Ischemia

Malperfusion, shock ٠ Impaired oxygen extraction

Sepsis, shock

Passive venous congestion

- Cardiac insufficiency, heart failure Systemic hypoxia
- COPD, pneumonia, respiratory failure, • ARDS

Inflammatory signals (e.g. endotoxin) \downarrow iNOS function \downarrow eNOS phosphorylation \downarrow hepatic vasodilation Drug-induced liver injury Hepatic damage/ (e.g. acetaminophen) Centrilobular necrosis **↑AST, ALT > 20x ULN*** Chronic conditions in HLI process *often in setting of cardiac, circulatory or Cardiomyopathy (<40%) respiratory failure COPD (20%) •

Cirrhosis (15%)

Acute Conditions complicating HLI

- Acute heart failure/cardiogenic shock (50 70 %)
- Sepsis (13 32 %) ۰

CHOLESTATIC DYSFUNCTION

- Occuring in early hours in critically ill patients
- No clear definition
- Up to 20 % ICU patients
 - Mainly in septic shock, cardiogenic shock, less cases after surgery
- Cause or symptom?
 - Bile acids inhibit hepatic iNOS
- Bile acids have pro- and anti-inflammatory effects
 - Neonatal hyperbilirubinemia as a protective factor against S. agalactiae sepsis

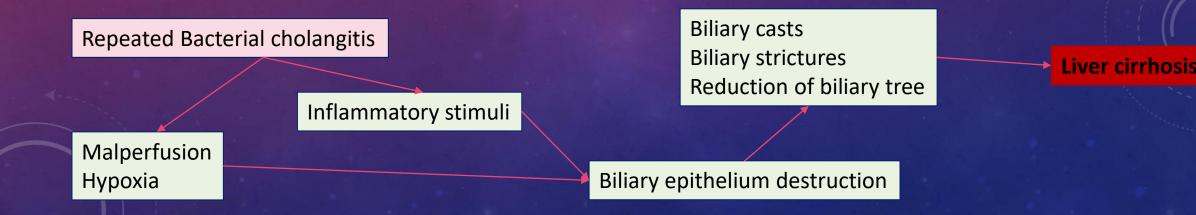
CHOLESTATIC DYSFUNCTION SCHEME

Gram- bacteria Toxic products retention Malperfusion PAMPs ↓ hepatobiliary transport(inflammation mediated)

cholestasis

BA retention

↓ canalicular contractility


Basolateral efflux of conjugated BA to blood

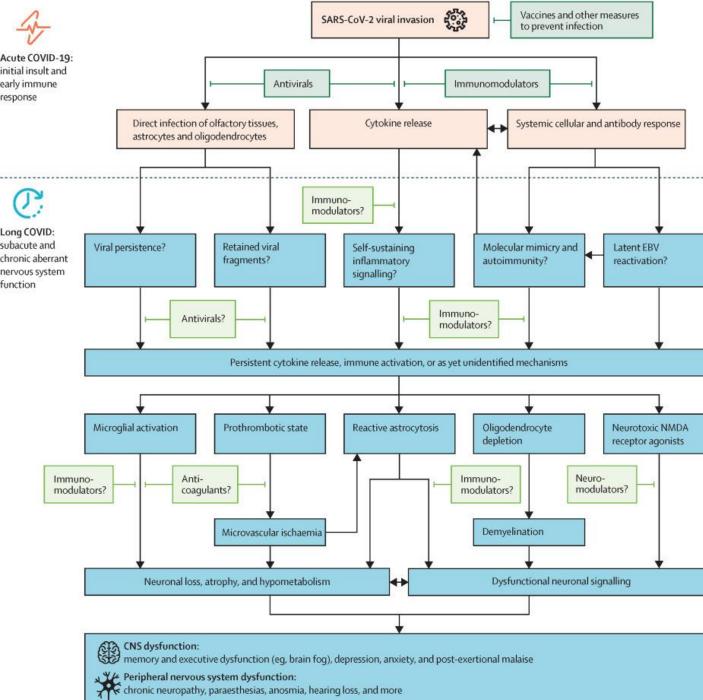
To be considered when

- ALP >6.8 μkat/l (>400 IU/L)
- GGT >1.3 μkat/l (>80 IU/L)
- T-bilirubin >265 μ mol/l (or >3 mg/dl)

SCLEROTISING CHOLANGITIS OF CRITICALLY ILL PATIENTS

- Only 0.6 % of critically ill patients
- Progressive condition
- ATB treatment may reduce or prevent progression
- When liver cirhhosis develop only minority eligible for transplantation
 - Median of survival without transplantation is cca 13 months

NEURAL SYSTEM IN MODS


- Affected in 70 % of critically ill patients
- Pathomechanism
 - Local inflammatory activation (IL-1, -2, -6, TNF-α) -> systemic
 - Rolling neutrophils, activation of coagulation, microthrombi creation
 - Vasoparalysis -> capillary dilation reduces cerebral blood flow
 - Mitochondrial production halted -> ATP depletion
 - Microglia and astrocytes activated
 - Blood-brain barrier may become leaky cytokines and immune cells into cerebrospinal liquor
 - Loss of oligodendrocytes demyelination
 - Neurotransmitter dysbalance

NEURAL SYSTEM IN MODS

- Both central and peripheral may be affected
- Acute disorders are mostly reversible when sepsis or SIRS is resolved
- Central
 - Behavioural changes
 - Depression, psychosis
 - Consciousness alterations
 - Pre-coma, coma; delirium
 - Sepsis-induced encephalopathy
 - Long-term cognitive dysfunction may occur
- Peripheral
 - Critical illness myopathy
 - Critical illness polyneuropathy

https://www.thelancet.com/cms/attachment/908592fb-a9c8-4ff3-be2cf03f54f056e3/gr1.jpg

SKIN CHANGES IN MODS

- Acute skin failure
 - Life threatening condition
 - Affect skin and adjacent tissues
 - Cells cannot survive in zones of hypoxia, mechanical stress, lack of nutrients and toxic products and metabolites accumulation
 - Skin cannot regulate
 - Body core temperature
 - Percutaneous loss of fluid, electrolytes and protein (fluid and ion dysbalance)
 - Penetration of foreign bodies and pathogens (mechanical and immune barrier compromised)
- Pathomechanism
 - Combination of hypoxia, hypoperfusion, inflammatory response, \uparrow vascular permeability -> cellular acidosis, hypermetabolic state -> loss of cellular functions

SCORING SYSTEMS IN MODS

• SOFA (Sequential Organ Failure Assessment)

• Best mortality predictor in initial 48 hours

Score	CNS (GCS)	CVS (MAP or vasopressors)	Respiratory PaO2/FiO2	Coagulation Platelets	Liver Bilirubin (mg/dl /	Renal Creatinine	Initial score	Average mortality
	(000)		(mmHg/kPa)	(x103/µl)	μmol/l)	(mg/dl / μmol/l) or urine output	11 or less, then drop	<6 %
+0	15	MAP ≥70 mmHg	≥400/53.3	≥150	<1.2/20	<1.2/110	Constant	
+1	13 – 14	MAP <70 mmHg	<400/53.3	<150	1.2 - 1.9/20 - 32	1.2 - 1.9/ 110 - 170	2 - 7	37 %
+2	10 - 12	dopamine ≤ 5 μg/kg/min or dobutamine (any dose)	<300/40	<100	2.0 - 5.9/33 - 101	2.0 - 3.4/ 171 - 299	8-11	60 %
+3	6 – 9	dopamine > 5 μg/kg/min OR epinephrine ≤ 0.1 μg/kg/min OR norepinephrine ≤ 0.1 μg/kg/min	<200/(26.7 and mechanically ventilated including CPAP	<50	6.0 - 11.9/102 - 204	3.5 – 4.9/ 300 – 440 Or <500 ml/day	11 - 24	91 – 95 %
+4	3 - 5	dopamine > 15 μg/kg/min OR epinephrine > 0.1 μg/kg/min OR norepinephrine > 0.1 μg/kg/min	<100/(13.3 and mecha nically ventilated including CPAP	<20	>12.0/204	>5.0/440 Or <100 ml/day		

SCORING SYSTEM IN MODS

- Quick SOFA (qSOFA)
 - When laboratory data not available/unable to be assessed
 - Orientational parameter
 - Prognosis
 - Initial score of 2 3 -> increased mortality or prolonged ICU stay

Parameter	0	1
Systolic BP (mmHg)	>100	≤100
Respiration (breaths/min)	<22	≥22
GCS	15	14 - 3

QUICK SOFA MNEMONICS – USE "HAT"

- Hypotension (systolic BP <100 mmHg)
- Altered consciousness (GCS <15)
- Tachypnea >22/min

https://www.traumayellow.com/uploads/2/0/9/5/20955098/4670173_orig.png https://m.media-amazon.com/images/I/81IwITQKbtL._AC_UY1000_.jpg

- APACHE IV (Acute Physiology and Chronic Health Evaluation)
 - First APACHE model introduced in 1981
 - APACHE II
 - Acute physiology score + age points + chronic health points
 - APACHE III (1991)
 - 17 variables
 - APACHE IV released in 2006
 - Complex system 142 variables
 - Web calculations can be done
 - Developed and validated in ICUs of USA only

ICU Calculators-RNSH

APACHE IV Score

Age (ans) Temperature (°C) MAP (mmHg) HR (/min) RR (/min) Mecanical Ventilation FiO2 (%) pO2 (mmHg) pCO2 (mmHg) Arterial pH Na+ (mEq/L) Urine Output (mL/24h) Creatinine (mg/dL) Urea (mEq/L) BSL (mg/dL) Albumin (g/L) Bilirubin (mg/dL) Ht (%) WBC (x1000/mm3) GCS : - Eyes - Verbal - Motor

37	
70	
80	
15	
\odot No \odot Yes	
90	
40	
7.4	
140	
1	
4	
100	
40	
1	
40	
10	
Not available	
4. Spontaneous	_
5. Oriented	<u>·</u>
6. On Command	

Chronic Health Condition :	
CRF / HD	Lymphoma
□ Cirrhosis	🗆 Leukemia / Myeloma
Hepatic Failure	Immunosuppression
Metastatic Carcinoma	

]
Other	~
\odot No \bigcirc	Yes
\odot No \bigcirc	Yes
	● No ○

Ad:	missior	1 Diagno	sis	:	
0	Non o	perative	\bigcirc	Posto	perative

System 🗸

Diagnosis 🗸

Thrombolysis :

🔍 No 🔍 Yes

Calculate

 \sim

APACHE IV Score	/286
APS Score	/239
Estimated Mortality Rate	%
Estimated Length of Stay	days

html

- Marshall's MOD Score
 - Simple evaluation of organs dysfunction
 - More than 2 pts in each parameter -> organ failure
 - When staying at ICU prognosis
 - 9 12 –> 25 % mortality
 - 13 16 –> 50 % mortality
 - 17 20 –> 75 % mortality
 - 21 24 –> 100 % mortality

Organ	0	1	2	3	4
System					
Respiratory					
PO ₂ /FiO ₂	and the second second				2214717432
(mmHg)	>300	226-300	151-225	76-150	≤75
Renal					
serum					
creatinine					9
(µmol/liter)	≤ 100	101-200	201-350	351-500	>500
Hepatic					
serum					
bilirubin	≤ 20	21-60	61–120	121-240	>240
(µmol/l)					
Cardiovascul					
ar	\leq 10,0	10,1-15,0	15,1-20,0	20,1-30,0	>30,0
PAR ¹⁾					
Hematologic	n tean an a				
platelets/nl	>120	81-120	51-80	21-50	≤ 20
Neurologic					p
Glasgow	15	13-14	10-12	7–9	≤ 6
Coma Score					NOA

https://epomedicine.com/wp-content/uploads/2015/10/Modified-marshall-score.jpg

Modified Marshall Scoring System for Organ Dysfunction

 Table 7.4-1. Modified Marshall scoring system

Organ system	Score						
	0	1	2	3	4		
Respiratory (PaO ₂ /FiO ₂)	>400	301-400	201-300	101-200	≤101		
Renal (serum creatinine, micromol/L) ^a	≤134	134-169	170-310	311-439	>439		
Cardiovascular (systolic	>90	<90	<90	<90, pH <7.3	<90, pH <7.2		
blood pressure, mm Hg) ^b		Fluid responsive	Not fluid responsive				

A score of ≥ 2 in any system defines the presence of organ failure.

^a The score for patients with preexisting chronic renal failure depends on the extent of further deterioration of baseline renal function. No formal correction exists for a baseline serum creatinine \geq 134 micromol/L or \geq 1.4 mg/dL.

^b Off inotropic support.

Source: Gut. 2013;62(1):102-11.

https://empendium.com/mcmtextbook/table/B31.5.1-2.

- Denver MOF Score •
 - In trauma patients with intensity severity score >15 and surviving 48 hours
 - Any parameter >3 indicates worse outcome

Dysfunction	Grade 0	Grade 1	Grade 2	Grade 3
Pulmonary PaO2/FiO2 ratio	> 208	208 - 165	165 - 83	< 83
Renal Creatinine (umol/L)	<159	160 - 210	211 - 420	> 420
Hepatic Total Bilirubin (umol/L)	< 34	34 - 68	69 - 137	> 137
Cardiac Inotropes	No inotropes	Only one inotrope at a small dose *	Any inotrope at moderate dose or >1 agent, all at small doses *	Any inotrope at large dose or > 2 agents at moderate doses *

Inotrope doses (in ug/ Kg / min):

	Small	Moderate	Large
Milrinone	<0.3	0.4 -0.7	>0.7
Vasopressin	<0.03	0.03 -0.07	>0.07
Dopamine	<6	6 - 10	>10
Dobutamine	<6	6 - 10	>10
Epinephrine	<0.06	0.06 -0.15	>0.15
Norepinephrine	<0.11	0.11 -0.5	>05
Phenylephrine	<0.6	0.6 - 3	>3

https://www.researchgate.net/publication/23303398/figure/tbl1/AS:932288380538896@1599286279908/Denver-Postinjury-Multiple-Organ-Failure-Score.png

- PIRO (Prediction, Infection, Response & Organ Dysfunction)
 - For use in emergency department when infection suspected
 - Various phenotypes (e.g. P2I1R1O1, etc.)

Focus of infection	Stag	e l (<i>n</i> = 431, 26%)	Stage II (<i>n</i> = 510, 31%)	S	Stage III (<i>n</i> = 601, 37%)	Stage IV (<i>n</i> = 96, 6%)
	Pred 0–5%	icted hospital mortality rate 6	Predicted hospital mortality rate 6–20%		Predicted hospital mortality rate 21–50%	Predicted hospital mortality rate 51–100%
	P ₁₋₂	I ₁₋₂ R ₁ O ₁	P ₁ I ₂ R ₁ O ₂			P ₂₋₃ I ₁₋₂ R ₂ O ₂
	$P_1 I_1$	R ₁ O ₂	P ₁ I ₁₋₂ R ₂ O ₂	F	P ₃ I ₁₋₂ R ₂ O ₁	
	P ₁ I ₁ .	-2 R ₂ O ₁	P ₂ I ₁₋₂ R ₁ O ₂	F	P ₃ I ₁₋₂ R ₁ O ₂	
	$P_2 I_1$	₋₂ R ₁ O ₁	P ₂ I ₁₋₂ R ₂ O ₁			
			P ₃ I ₁₋₂ R ₁ O ₁			
		Observed hospital mortality rate 3% (<i>n</i> = 14)	Observed hospital mortality 15% (n = 78)	rate	Observed hospital mortality rate 24% (<i>n</i> = 145)	Observed hospital mortality rate 34% (<i>n</i> = 33)
Respiratory (<i>n</i> = 860, 52.5%)		3% (6/215)	19% (46/248)		26% (94/363)	44% (15/34)
Urinary (<i>n</i> = 332, 20.3%	6)	3% (2/66)	10% (11/111)		15% (21/136)	26% (5/19)
GI (<i>n</i> = 282, 17.5%)		3% (4/126)	12% (11/91)		29% (12/41)	28% (8/29)
Primary bacteraemia (<i>r</i> 159, 9.7%)	n =	8% (2/24)	17% (10/60)		30% (18/61)	36% (5/14)

Original cohort from 2013 https://annalsofintensivecare. springeropen.com/articles/10. 1186/s13613-021-00966-7/tables/2

						6 7 7	
P score	Points	l score	Points	R score	Points	O score	Points
Age, years		Type of infection		Altered temperature		Hypotension	3
≤ 60	0	CAI	0	No	0	SOFA > 0	1
61–80	1	HCAI	1	Fever	- 1		
> 80	3	HAI	2	Hypothermia	1		
Male	1			Hyperglycemia	1		
Previous ATB	1			Tachypnea	1		
Chronic hepatic disease	4			Severity of infection			
Chronic hematologic disease	3			Infection or sepsis	0		
Cancer	3			Severe sepsis	1		
Atherosclerosis	1			Septic shock	4		
Karnovsky index < 70	2						
Total possible points	18		2		7		4
P1 (0–2 point)		I1 (0–1 point)		R1 (-1–3 points)		O1 (0 points)	
P2 (3–4 points)		I2 (2 points)		R2 (≥ 4 points)		O2 (≥ 1points)	
P3 (≥ 5 points)							

P-score predisposition score, *I score* insult/infection score, *R score* host response score, *O score* organ dysfunction score, *ATB* antibiotic therapy, *CAI* community-acquired infection, *HCAI* healthcare-associated infection, *HAI* hospital-acquired infection, *SOFA* sepsis-related organ failure assessment

- Mortality prediction models (MPM-II and MPM0-III)
 - MPM-II (1993)
 - Assessment at 0, 24, 48 and 72 hours
 - Parameters
 - physiology (coma, HR>150, sBP<90)
 - chronic dg. (CKD, cirrhosis, metastases)
 - acute dg. (ARI, dysrhythmia, stroke, GIT bleeding, intracranial mass effect)
 - other factors (CPR, mechanical ventilation, emergency surgery)
 - Mortality overprediction (increases when criteria are not improving)
 - MPM0-III (2005)
 - 15 variables independent of diagnosis

(Mortality Probability Models)

Variables (<u>Help</u>)	Values (1 if yes, 0 otherwise)	Beta
Medical or unscheduled surgery admission		0
Metastatic neoplasm	~	0
Cirrhosis	✓	0
Chronic renal insufficiency	×	0
C.P.R. prior to admission	✓	0
Coma (Glasgow 3-5) (<u>Help</u>)	✓	0
Heart Rate > = 150	v	0
Systolic Blood Pressure < = 90 mmHg	×	0
Acute renal insufficiency	✓	0
Cardiac dysrhythmia	✓	0
Cerebrovascular incident	✓	0
Gastrointestinal bleeding	×	0
Intracranial mass effect	✓	0
Mechanical ventilation	✓	0
Age	0 0	0.03057
Predicted Death rate : 0 Compute Clear		Logit = 0 Logit = Sum (values * beta) + age * 0.03057 -5.46836 Predicted death rate = (e ^{Logit}) / (1 + e ^{Logit})

https://f6publishing.blob.core.windows.net/664e9405-bb4d-437c-a4d5-60bd87208e7b/WJCCM-1-67-g005.jpg

- SAPS II and III (Simplified Acute Physiology Score)
 - SAPS II (1993)
 - At ICU admission, better for disease group survival than individual prediction
 - Total 0 163 pts
 - Age
 - 12 physiological variables (incl. CVS, respiratory, renal, neurological, hematological, hepatic)
 - Type of admission (unscheduled surgery, scheduled surgery, medical)
 - Underlying disease variables (AIDS, metastases, hematologic malignancy)
 - SAPS III (2005)
 - See next slide

Age, years	<40 0	Body temperature, °C (°F) Highest within 1 hr of ICU admission	>35 °C (<95 °F) +1 <35 °C (<95 °F) +7.5		Oxygenation PaO ₂ , FiO ₂ refer to arterial oxygen pressure	PaO₂≥60 and no MV		+1
	40-59 +5	Highest within 1 hr of ICO admission			(lowest), inspiratory oxygen concentration and MV refers to ventilatory support and	$PaO_2 < 60$ and no MV		+5
	60-69 +9				mechanical ventilation	PaO₂/FiO₂≥100 and MV		+7
	70-74 +13	Creatinine, mg/dL (µmol/L) Highest within 1 hr of ICU admission				PaO₂/FiO₂<100 and MV		+11
	75-79 +15							=
	≥80 +18	-	(6 µmol/L) +7.5					_
		-	<1.2 mg/dL (<106.1 µmol/L) +1		Cancer therapy Chemotherapy, immunosuppression,	No 0	Yes +3	
Length of stay before ICU admission, days	<14 0 14-27 +6 ≥28 +7		1.2-1.9 mg/dL (106.1-176.7 μmol/L) +2		radiotherapy, steroid treatment			
Intrahospital location before ICU admission	Emergency room +5	_	2-3.4 mg/dL (176.8-309.3 μmol/L) +7		Chronic <u>HF (NYHA IV)</u>	No 0	Yes +6	
	Other ICU +7		≥3.5 mg/dL (≥309.4 µmol/L) +8		Haematological cancer	No 0	Yes +6	
	Other ward +8	Heart rate, beats/min Highest within 1 hr of ICU admission	<120	+1	Cirrhosis	No 0	Yes +8	
Use of major therapeutic options before ICU admission Not all variables collected were included in the final data model, please see original article in	Other/none 0		120-159	+5			103 +0	
	Vasoactive drugs +3		≥160 +7		AIDS	No 0	Yes +8	
"Evidence" for further information.		Leukocytes, G/L	<15 +1	≥15 +2	Metastatic cancer	No 0	Yes +11	
Planned or unplanned ICU admission	Planned 0	Highest within 1 hr of ICU admission						
	Unplanned +3	pH >7.25 +1 ≤7.25 +3		≤7.25 +3	Reason(s) for ICU admission			
Surgical status at ICU admission		Platelets, G/L Lowest within 1 hr of ICU admission	50-99 +5		If both reasons are present, only the worse value (-4) is scored; select "Neurologic:	Neither		0
	Scheduled surgery 0				seizures"	Cardiovascular: rhythm d	listurbances	-5
	No surgery +5					Neurologic: seizures		-4
	Emergency surgery +6		20-49 +8					
Acute infection at ICU admission	Other/none 0		<20	+13	Cardiovascular: hypovolemic hemorrhagic shock, hypovolemic non-hemorrhagic shock	No 0	Yes +3	
Not all variables collected were included in the final data model, please see original article in "Evidence" for further information.	Nosocomial +4	Systolic blood pressure, mm Hg Lowest within 1 hr of ICU admission	≥120 +1		Digestive: acute abdomen, other	No 0	Yes +3	
	Respiratory +5		70-119 +3		Neurologic: focal neurologic deficit	No 0	Yes +7	
Glasgow Coma Scale/Score			40-69 +8				162 +1	
Lowest within 1 hr of ICU admission	≥13 +1 7- 6 +7.5 5 +10 3- 12 +2 4 +15	-	<40	+12	Digestive: severe pancreatitis	No 0	Yes +9	
Total bilirubin, mg/dL (µmol/L) Highest within 1 hr of ICU admission	<2 mg/dL (<34.2 µmol/L) +1	_			Neurologic: intracranial mass effect	No 0	Yes +10	
	2-5.9 mg/dL (34.2-102.5 μmol/L) +4							
	≥6 mg/dL (≥102.6 µmol/L) +5							

Variable		Score			
	Neonate	Infant	Child	Adolescent	appointed
SBP(mmHg)	40-55	45-65	55-75	65-85	3
	<40	<45	<55	<65	7
Temperature	All ages		<33°C c	$<33^{\circ}C \text{ or} >40^{\circ}C$	
Mental status	All ages		Stupor or coma (GCS<8)		5
	Neonate	Infant	Child	Adolescent	
Heart rate	215-225	215-225	185-205	145-155	3
	>225	>225	>205	>155	4
Pupillary reflex	All ages=one pupil fixed		Pupil>3 mm	Pupil>3 mm	
	All ages=both fixed p		pupil>3 mm	pupil>3 mm	
Acidosis pH	All a	2			
		6			
pH		2			
		3			
PCO ₂ (mmHg)		1			
		3			
Total CO_2 (mmol/L)		4			
Arterial PaO ₂ (mmHg)		3			
	All ages=42.0			6	
Glucose		2			
Potassium	All ages>6.9 mmol/L			3	
	Neonate	Infant	Child	Adolescent	
Creatinine (µmol/L)	>75	>80	>80	>115	2
White blood cells		4			
	Neonate All other ages		er ages		
Prothrombin time (PT)	PT>22.0 s		PT>22.0 s		3
Partial thromboplastin time (PTT)	PTT>85.0 s		PTT>57.0 s		3
	All ages=100,000-200,000			2	
Platelets (cells/mm ³)		4			
		5			

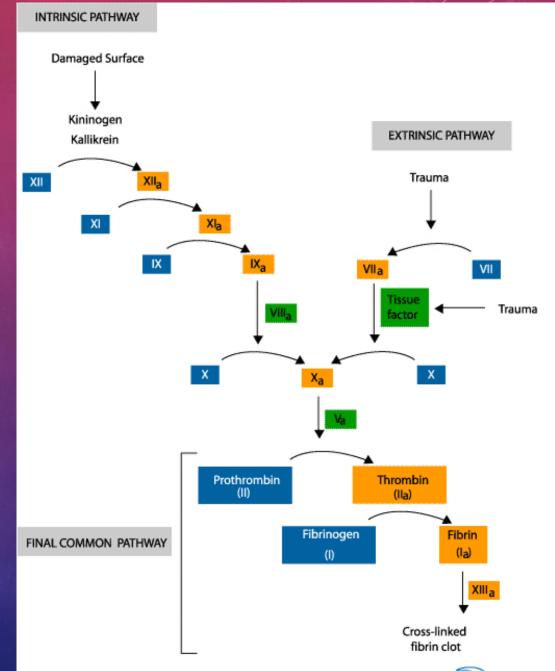
PRISM III (1996) & IV (2013) score

- PRISM III
 - 17 variables, 26 ranges
- PRISM IV
 - + Age
 - + Admission source
 - + CPR in previous 24 hrs
 - + Cancer
 - + Low-risk systems of primary dysfunction
 - + Neurologic variable (subscore from PRISM III)
 - + Non-neurologic variable (subscore from PRISM III)

https://d3i71xaburhd42.cloudf ront.net/c4e2688756c98d61ef 0af89a5f050f5a6f50d04c/2-Table1-1.png

DISSEMINATED INTRAVASCULAR COAGULOPATHY

DIC- DISSEMINATED INTRAVASCULAR COAGULOPATHY

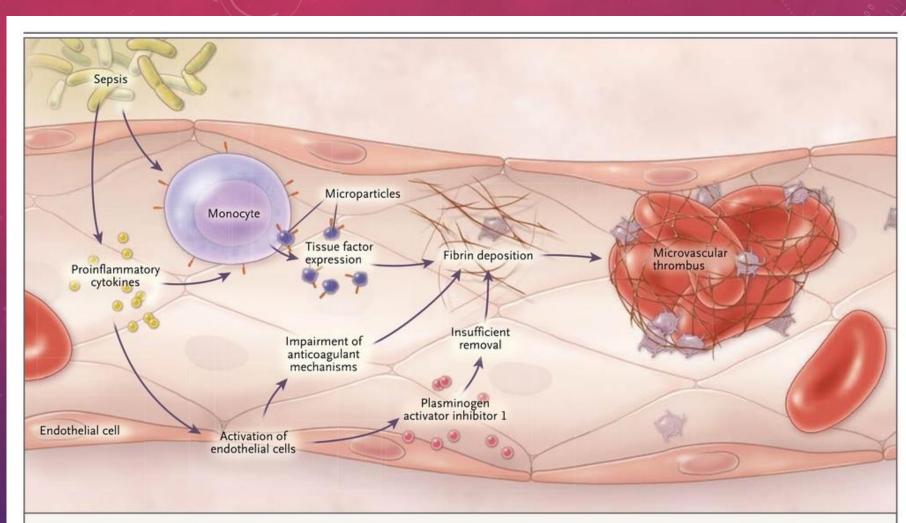

- Thrombohemorrhagic disorder characterised by an excessive activation of a coagulation system and formation of thrombi
- Acute, subacute, chronic form
- Occurs as a complication of many disorders, not a primary disease
 - 50% cases: obstetrics (amniotic fluid embolism, retained dead fetus, placenta tissue embolism)
 - 33% carcinomatosis
 - Rest- massive trauma, massive burns, sepsis, systemic inflammation

DIC- DISSEMINATED INTRAVASCULAR COAGULOPATHY

- Normally coagulation is a local process
- DIC systemic coagulation (at more places at same time), that leads to consumption and thus depletion of coagulation factors and platelets - consumption coagulopathy, with secondary fibrinolysis. Bleeding, thrombi!
- Combination of
 - coagulation defect (low fibrinogen and other plasma coagulation factors) and of
 - primary hemostasis defect (thrombocytopenia)
 - Intensive activation of **fibrinolysis** (D-dimer)

COAGULATION CASCADE

 Excessive activation of a coagulation system or insufficient function of anticoagulant system has a key role in DIC



AnaesthesiaUK

https://www.researchgate.net/profile/Sebastien-Le-Yaouanq/publication/277033524/figure/fig12/AS:669484671045647@1536628992399/Cascade -de-la-coagulation-sanguine-source-wwwfrcacouk.ppm

PATHOPHYSIOLOGY

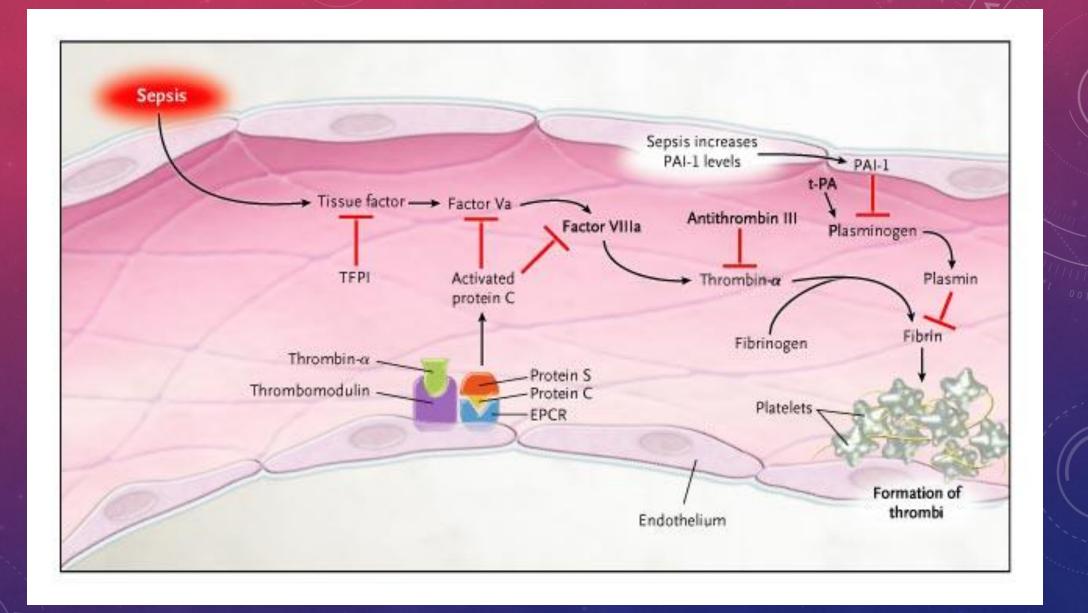

- DIC starts by activation of a coagulation cascade (exposure of tissue factor or activation of other procoagulants)
- Tissue factor activates factor VII. Tissue factor is normally not present in circulation !
- Systemic coagulation -> microthrombi -> obliteration of small vessels -> tissue ischemia
- Consumption of coagulation factors -> bleeding
 - Can be a massive bleeding- hemorrhagic, hypovolemic shock !

Figure 2. Pathogenesis of Disseminated Intravascular Coagulation in Sepsis.

Through the generation of proinflammatory cytokines and the activation of monocytes, bacteria cause the up-regulation of tissue factor as well as the release of microparticles expressing tissue factor, thus leading to the activation of coagulation. Proinflammatory cytokines also cause the activation of endothelial cells, a process that impairs anticoagulant mechanisms and down-regulates fibrinolysis by generating increased amounts of plasminogen activator inhibitor.

Hunt BJ. Bleeding and coagulopathies in critical care. N Engl J Med. 2014 Feb 27;370(9):847-59. doi: 10.1056/NEJMra1208626. PMID: 24571757.

Russell JA. Management of sepsis. N Engl J Med. 2006 Oct 19;355(16):1699-713. doi: 10.1056/NEJMra043632. Erratum in: N Engl J Med. 2006 Nov 23;355(21):2267. PMID: 17050894

PATHOPHYSIOLOGY

• Pathological presence of a tissue factor in a circulation - sources

- Cells from different tissues during birth, large trauma, operation, tumor cells
- Pathological cellular forms myelo- and lymphoproliferative processes (tissue factor in their cell membrane)
- Activated endothelia and monocytes by endotoxin, systemic inflammation; expressing of tissue factor on cell surface
- Cytoplasmatic tissue factor released from hemolysed erythrocytes
- Mucus from adenocarcinomas directly activate f. X.
- TNF-alfa: induces endothelial cells to express tissue factor and to decrease thrombomodulin, implicated in DIC occuring with sepsis

DIC TYPES

Type**	Intervention			
Bleeding	Blood transfusion			
Massive bleeding	Synthetis protease inhibitors Antifibrinolytic therapy			
Organ failure	Natural protease inhibitors*			
Non-symptomatic	Heparin			

* antifibrinolytics treatment in organ failure not recommended strongly
 ** underlying cause treatment priority, except of massive bleeding type

DIC STAGES

1. Hypercoagulative

- Consumption of platelets and coagulation factors
- Microcirculation obstruction
- Ischemic damage to tissues
- 2. Hypocoagulative & Fibrinolytic
 - Insufficient amount of platelets and coagulation factors
 - Fibrinolysis finishing the chain of a disaster
 - Bleeding and insufficient clotting

CLINICAL FEATURES

- Bleeding
 - gingival, GIT bleeding, hematuria, epistaxis, hematomas, bleeding of surgical and puncture wounds, brain bleeding, internal organ bleeding, joints
- Microthrombi and microemboli
 - peripheral acrocyanosis, pregangrenous changes, organ impairment (lungs, kidney, liver)
- Result
 - Microangiopathic hemolytic anaemia, dyspnoea, cyanosis, respiratory failure, convulsions, coma, oliguria, acute renal failure, sudden or progressive circulatory failure, shock

CLINICAL FEATURES

• Onset

- Acute, fulminant: e.g. endotoxic, shock, amniotic fluid embolism
 - Dominated by a bleeding diathesis
- Chronic, insidious: e.g. carcinomatosis, dead fetus retention
 - Dominated by thrombotic complications

LABORATORY FINDINGS

- Low fibrinogen
- Low coagulation factors
- Thrombocytopenia
- Increased FDP (fibrin degradation products): D- dimer
 D- dimer :
 - norm: 0-0,5 ug/ml FEU
 - > 4 ug/ml FEU: compatible with DIC, but not diagnostic
 - >8ug/ml FEU: strongly suggestive of DIC
- PT, PTT prolonged

Questions?

marek.brenisin@gmail.com marek.brenisin@upjs.sk

